Suppr超能文献

数字行业中的碳核算:迈向不确定性决策的必要性。

Carbon Accounting in the Digital Industry: The Need to Move towards Decision Making in Uncertainty.

作者信息

Samuel Gabrielle, Lucivero Federica, Knowles Bran, Wright Katherine

机构信息

Department of Global Health and Social Medicine, King's College London, Strand, London WC2B 4BG, UK.

Ethox Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK.

出版信息

Sustainability. 2024 Feb 29;16(5):2017. doi: 10.3390/su16052017.

Abstract

In this paper, we present findings from a qualitative interview study, which highlights the difficulties and challenges with quantifying carbon emissions and discusses how to move productively through these challenges by drawing insights from studies of deep uncertainty. Our research study focuses on the digital sector and was governed by the following research question: how do practitioners researching, working, or immersed in the broad area of sustainable digitisation (researchers, industry, NGOs, and policy representatives) understand and engage with quantifying carbon? Our findings show how stakeholders struggled to measure carbon emissions across complex systems, the lack of standardisation to assist with this, and how these challenges led stakeholders to call for more data to address this uncertainty. We argue that these calls for more data obscure the fact that there will always be uncertainty, and that we must learn to govern from within it.

摘要

在本文中,我们展示了一项定性访谈研究的结果,该研究突出了量化碳排放的困难与挑战,并探讨了如何通过借鉴深度不确定性研究的见解来有效应对这些挑战。我们的研究聚焦于数字领域,受以下研究问题的指引:从事可持续数字化广泛领域研究、工作或深入其中的从业者(研究人员、行业人士、非政府组织和政策代表)如何理解并参与碳排放量化?我们的研究结果表明,利益相关者在跨复杂系统测量碳排放时面临困难,缺乏有助于此的标准化,以及这些挑战如何促使利益相关者呼吁获取更多数据以应对这种不确定性。我们认为,这些对更多数据的呼吁掩盖了一个事实,即不确定性将永远存在,而且我们必须学会在其中进行管理。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Differences in carbon emissions between the digital economy sectors in China and the USA.中国和美国数字经济部门之间的碳排放差异。
Environ Sci Pollut Res Int. 2025 Jul;32(32):19061-19072. doi: 10.1007/s11356-023-29736-7. Epub 2023 Sep 16.

引用本文的文献

本文引用的文献

1
GREENER principles for environmentally sustainable computational science.绿色计算科学原则,实现环境可持续发展。
Nat Comput Sci. 2023 Jun;3(6):514-521. doi: 10.1038/s43588-023-00461-y. Epub 2023 Jun 26.
3
The Carbon Footprint of Bioinformatics.生物信息学的碳足迹。
Mol Biol Evol. 2022 Mar 2;39(3). doi: 10.1093/molbev/msac034.
4
Liberating Data: Politics of Reality in Interdisciplinary Social Psychology.解放数据:跨学科社会心理学中的现实政治
Integr Psychol Behav Sci. 2024 Dec;58(4):1138-1159. doi: 10.1007/s12124-021-09673-1. Epub 2022 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验