Suppr超能文献

从机器学习角度看利用环境友好型超临界二氧化碳提高药物溶解度的最新进展 。 你提供的原文中“incremsent”拼写有误,应该是“increase” 。

Recent advancements toward the incremsent of drug solubility using environmentally-friendly supercritical CO: a machine learning perspective.

作者信息

Alamoudi Jawaher Abdullah

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

出版信息

Front Med (Lausanne). 2024 Sep 2;11:1467289. doi: 10.3389/fmed.2024.1467289. eCollection 2024.

Abstract

Inadequate bioavailability of therapeutic drugs, which is often the consequence of their unacceptable solubility and dissolution rates, is an indisputable operational challenge of pharmaceutical companies due to its detrimental effect on the therapeutic efficacy. Over the recent decades, application of supercritical fluids (SCFs) (mainly SCCO) has attracted the attentions of many scientists as promising alternative of toxic and environmentally-hazardous organic solvents due to possessing positive advantages like low flammability, availability, high performance, eco-friendliness and safety/simplicity of operation. Nowadays, application of different machine learning (ML) as a versatile, robust and accurate approach for the prediction of different momentous parameters like solubility and bioavailability has been of great attentions due to the non-affordability and time-wasting nature of experimental investigations. The prominent goal of this article is to review the role of different ML-based tools for the prediction of solubility/bioavailability of drugs using SCCO. Moreover, the importance of solubility factor in the pharmaceutical industry and different possible techniques for increasing the amount of this parameter in poorly-soluble drugs are comprehensively discussed. At the end, the efficiency of SCCO for improving the manufacturing process of drug nanocrystals is aimed to be discussed.

摘要

治疗药物的生物利用度不足往往是其溶解度和溶解速率不理想的结果,这对治疗效果有不利影响,是制药公司无可争议的运营挑战。在最近几十年里,超临界流体(主要是超临界二氧化碳)的应用吸引了许多科学家的关注,因为它具有低易燃性、易获得性、高性能、环保以及操作安全/简单等优点,有望替代有毒且对环境有害的有机溶剂。如今,由于实验研究成本高昂且耗时,不同的机器学习方法作为一种通用、强大且准确的方法,用于预测溶解度和生物利用度等不同重要参数,受到了极大关注。本文的主要目标是综述不同基于机器学习的工具在预测药物在超临界二氧化碳中的溶解度/生物利用度方面的作用。此外,还全面讨论了溶解度因素在制药行业中的重要性以及提高难溶性药物中该参数值的不同可能技术。最后,旨在讨论超临界二氧化碳在改善药物纳米晶体制造工艺方面的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18b8/11402729/593dbb041e2c/fmed-11-1467289-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验