Coletti Roberta, Leiria de Mendonça Mónica, Vinga Susana, Lopes Marta B
Center for Mathematics and Applications (NOVA Math), NOVA FCT, NOVA University of Lisbon, Caparica, Portugal.
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
Bioinform Biol Insights. 2024 Sep 15;18:11779322241271535. doi: 10.1177/11779322241271535. eCollection 2024.
Tumor heterogeneity is a challenge to designing effective and targeted therapies. Glioma-type identification depends on specific molecular and histological features, which are defined by the official World Health Organization (WHO) classification of the central nervous system (CNS). These guidelines are constantly updated to support the diagnosis process, which affects all the successive clinical decisions. In this context, the search for new potential diagnostic and prognostic targets, characteristic of each glioma type, is crucial to support the development of novel therapies. Based on The Cancer Genome Atlas (TCGA) glioma RNA-sequencing data set updated according to the 2016 and 2021 WHO guidelines, we proposed a 2-step variable selection approach for biomarker discovery. Our framework encompasses the graphical lasso algorithm to estimate sparse networks of genes carrying diagnostic information. These networks are then used as input for regularized Cox survival regression model, allowing the identification of a smaller subset of genes with prognostic value. In each step, the results derived from the 2016 and 2021 classes were discussed and compared. For both WHO glioma classifications, our analysis identifies potential biomarkers, characteristic of each glioma type. Yet, better results were obtained for the WHO CNS classification in 2021, thereby supporting recent efforts to include molecular data on glioma classification.
肿瘤异质性是设计有效靶向治疗的一个挑战。胶质瘤类型的鉴定取决于特定的分子和组织学特征,这些特征由世界卫生组织(WHO)中枢神经系统(CNS)的官方分类定义。这些指南不断更新以支持诊断过程,而诊断过程会影响所有后续的临床决策。在此背景下,寻找每种胶质瘤类型特有的新的潜在诊断和预后靶点对于支持新疗法的开发至关重要。基于根据2016年和2021年WHO指南更新的癌症基因组图谱(TCGA)胶质瘤RNA测序数据集,我们提出了一种用于生物标志物发现的两步变量选择方法。我们的框架包括图形套索算法,以估计携带诊断信息的基因的稀疏网络。然后将这些网络用作正则化Cox生存回归模型的输入,从而识别出具有预后价值的较小基因子集。在每一步中,都对2016年和2021年分类得出的结果进行了讨论和比较。对于WHO的两种胶质瘤分类,我们的分析都识别出了每种胶质瘤类型特有的潜在生物标志物。然而,2021年WHO CNS分类取得了更好的结果,从而支持了最近将分子数据纳入胶质瘤分类的努力。