Adenane Rim, Andreu-Vilarroig Carlos, Avram Florin, Villanueva Rafael-Jacinto
Département des Mathématiques, Université Ibn-Tofail, Kenitra, Morocco.
Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain.
Math Med Biol. 2024 Dec 16;41(4):277-303. doi: 10.1093/imammb/dqae015.
Influenza and influenza-like illnesses pose significant challenges to healthcare systems globally. Mathematical models play a crucial role in understanding their dynamics, calibrating them to specific scenarios and making projections about their evolution over time. This study proposes a calibration process for three different but well-known compartmental models-SIR, SEIR/SLIR and SLAIR-using influenza data from the 2016-2017 season in the Valencian Community, Spain. The calibration process involves indirect calibration for the SIR and SLIR models, requiring post-processing to compare model output with data, while the SLAIR model is directly calibrated through direct comparison. Our calibration results demonstrate remarkable consistency between the SIR and SLIR models, with slight variations observed in the SLAIR model due to its unique design and calibration strategy. Importantly, all models align with existing evidence and intuitions found in the medical literature. Our findings suggest that at the onset of the epidemiological season, a significant proportion of the population (ranging from 29.08% to 43.75% of the total population) may have already entered the recovered state, likely due to immunization from the previous season. Additionally, we estimate that the percentage of infected individuals seeking healthcare services ranges from 5.7% to 12.2%. Through a well-founded and calibrated modeling approach, our study contributes to supporting, settling and quantifying current medical issues despite the inherent uncertainties involved in influenza dynamics. The full Mathematica code can be downloaded from https://munqu.webs.upv.es/software.html.
流感及流感样疾病给全球医疗系统带来了重大挑战。数学模型在理解其动态变化、针对特定情况进行校准以及预测其随时间的演变方面发挥着关键作用。本研究利用西班牙巴伦西亚自治区2016 - 2017季节的流感数据,为三种不同但知名的 compartmental 模型——SIR、SEIR/SLIR 和 SLAIR 提出了一种校准过程。校准过程中,SIR 和 SLIR 模型采用间接校准,需要进行后处理以将模型输出与数据进行比较,而 SLAIR 模型则通过直接比较进行直接校准。我们的校准结果表明,SIR 和 SLIR 模型之间具有显著的一致性,由于其独特的设计和校准策略,SLAIR 模型存在轻微差异。重要的是,所有模型都与医学文献中的现有证据和直觉相符。我们的研究结果表明,在流行病学季节开始时,很大一部分人口(占总人口的29.08%至43.75%)可能已经进入康复状态,这可能是由于上一季节的免疫作用。此外,我们估计寻求医疗服务的感染个体百分比在5.7%至12.2%之间。通过一种有充分依据且经过校准的建模方法,尽管流感动态存在内在不确定性,但我们的研究有助于支持、解决和量化当前的医学问题。完整的Mathematica代码可从https://munqu.webs.upv.es/software.html下载。