Suppr超能文献

组蛋白去乙酰化酶 HDAC3 调控麦角固醇的产生以增强昆虫病原真菌和内生真菌的氧化应激耐受性。

Histone deacetylase HDAC3 regulates ergosterol production for oxidative stress tolerance in the entomopathogenic and endophytic fungus .

机构信息

MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China.

出版信息

mSystems. 2024 Oct 22;9(10):e0095324. doi: 10.1128/msystems.00953-24. Epub 2024 Sep 17.

Abstract

Oxidative stress is encountered by fungi in almost all niches, resulting in fungal degeneration or even death. Fungal tolerance to oxidative stress has been extensively studied, but the current understanding of the mechanisms regulating oxidative stress tolerance in fungi remains limited. The entomopathogenic and endophytic fungus encounters oxidative stress when it infects insects and develops a symbiotic relationship with plants, and we found that host reactive oxygen species (ROSs) greatly limited fungal growth in both insects and plants. We identified a histone H3 deacetylase (HDAC3) that catalyzed the deacetylation of lysine 56 of histone H3. Deleting significantly reduced the tolerance of to oxidative stress from insects and plants, thereby decreasing fungal ability to colonize the insect hemocoel and plant roots. HDAC3 achieved this by regulating the expression of three genes in the ergosterol biosynthesis pathway, which includes the lanosterol synthase gene . The deletion of or reduced the ergosterol content and impaired cell membrane integrity. This resulted in an increase in ROS accumulation in fungal cells that were thus more sensitive to oxidative stress. We further showed that HDAC3 regulated the expression of the three ergosterol biosynthesis genes in an indirect manner. Our work significantly advances insights into the epigenetic regulation of oxidative stress tolerance and the interactions between and its plant and insect hosts.IMPORTANCEOxidative stress is a common challenge encountered by fungi that have evolved sophisticated mechanisms underlying tolerance to this stress. Although fungal tolerance to oxidative stress has been extensively investigated, the current understanding of the mechanisms for fungi to regulate oxidative stress tolerance remains limited. In the model entomopathogenic and plant symbiotic fungus , we found that the histone H3 deacetylase HDAC3 regulates the production of ergosterol, an essential cell membrane component. This maintains the cell membrane integrity to resist the oxidative stress derived from the insect and plant hosts for successful infection of insects and development of symbiotic associates with plants. Our work provides significant insights into the regulation of oxidative stress tolerance in and its interactions with insects and plants.

摘要

氧化应激是真菌在几乎所有生境中都会遇到的情况,导致真菌退化甚至死亡。真菌对氧化应激的耐受能力已经得到了广泛的研究,但目前对于调节真菌氧化应激耐受能力的机制的理解仍然有限。昆虫病原真菌和内生真菌在感染昆虫和与植物形成共生关系时会遇到氧化应激,我们发现,宿主活性氧(ROS)极大地限制了真菌在昆虫和植物中的生长。我们鉴定了一种组蛋白 H3 去乙酰化酶(HDAC3),它催化组蛋白 H3 赖氨酸 56 的去乙酰化。删除 显著降低了 对昆虫和植物氧化应激的耐受能力,从而降低了真菌在昆虫血腔和植物根部定殖的能力。HDAC3 通过调节三羧酸循环途径中的三个基因的表达来实现这一点,其中包括羊毛甾醇合酶基因 。缺失 或 降低了麦角固醇含量并损害了细胞膜完整性。这导致真菌细胞中 ROS 积累增加,从而使真菌对氧化应激更加敏感。我们进一步表明,HDAC3 以间接方式调节三个麦角固醇生物合成基因的表达。我们的工作显著提高了对氧化应激耐受的表观遗传调控以及 与植物和昆虫宿主相互作用的认识。

重要性:氧化应激是真菌普遍面临的挑战,真菌已经进化出了复杂的耐受机制。虽然真菌对氧化应激的耐受能力已经得到了广泛的研究,但目前对于真菌调节氧化应激耐受能力的机制的理解仍然有限。在模式昆虫病原真菌和植物共生真菌 中,我们发现组蛋白 H3 去乙酰化酶 HDAC3 调节麦角固醇的产生,麦角固醇是一种必需的细胞膜成分。这维持了细胞膜的完整性,以抵抗来自昆虫和植物宿主的氧化应激,从而成功感染昆虫并与植物形成共生关系。我们的工作为 及其与昆虫和植物的相互作用的氧化应激耐受调节提供了重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a7/11494875/f7c14b606340/msystems.00953-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验