Suppr超能文献

用于公猪精子形态分析的深度学习分类方法。

Deep learning classification method for boar sperm morphology analysis.

作者信息

Keller Alexandra, Maus McKenna, Keller Emma, Kerns Karl

机构信息

Department of Animal Science, Iowa State University, Ames, Iowa, USA.

Interdepartmental Genetics and Genomics, Iowa State University, Ames, Iowa, USA.

出版信息

Andrology. 2024 Sep 17. doi: 10.1111/andr.13758.

Abstract

BACKGROUND

Boar semen quality emphasizes three major criteria: sperm concentration, motility, and morphology. Methods to analyze concentration and motility quickly and objectively readily exist, but few exist for analyzing morphology outside of subjective manual counting. Other vital factors for fertilization, like acrosome health, lack efficient detection methods due to limitations in detection by the human eye and costly biomarker analysis, which is rarely used in semen diagnostics.

OBJECTIVE

To overcome these challenges, we propose a novel approach integrating deep-learning technology with high-throughput image-based flow cytometry (IBFC) for objective and accurate analysis of both morphology and label-free acrosome health of thousands of individual spermatozoa at once, as opposed to manually counting on a microscope slide.

MATERIALS AND METHODS

Images of 10,000 spermatozoa were captured using an IBFC and manually annotated based on the primary morphological defect or acrosome health status for the training of the convolutional neural network (CNN). The CNN used these images to train and then applied that training to unannotated images to predict the model accuracy.

RESULTS

Using the CNNs, high F1 scores of 96.73%, 98.55%, and 99.31% for 20x, 40x, and 60x magnifications, respectively, for morphological classification were attained. Additionally, the model demonstrates an F1 score of 99.8% in detecting subtle acrosome health variations at the 60x magnification.

DISCUSSION AND CONCLUSIONS

We have established an integrated approach to rapidly collect and classify morphological defects and acrosome health status, without the use of manual counting or biomarker labeling. Our study underscores the potential of artificial intelligence in semen diagnostics, reducing technician variability, streamlining assays, and facilitating the development of additional label-free detection methods. This innovative approach addresses the barriers hindering biomarker adoption in semen analysis, offering a promising avenue for enhancing reproductive health assessments.

摘要

背景

公猪精液质量强调三个主要标准:精子浓度、活力和形态。快速、客观地分析浓度和活力的方法已经存在,但除了主观的手工计数外,很少有分析形态的方法。受精的其他重要因素,如顶体健康,由于人眼检测的局限性和昂贵的生物标志物分析,缺乏有效的检测方法,而生物标志物分析在精液诊断中很少使用。

目的

为了克服这些挑战,我们提出了一种将深度学习技术与基于高通量图像的流式细胞术(IBFC)相结合的新方法,以便同时对数千个单个精子的形态和无标记顶体健康进行客观、准确的分析,而不是在显微镜载玻片上进行手工计数。

材料和方法

使用IBFC采集10000个精子的图像,并根据主要形态缺陷或顶体健康状况进行人工标注,用于训练卷积神经网络(CNN)。CNN使用这些图像进行训练,然后将该训练应用于未标注的图像以预测模型准确性。

结果

使用CNN,在形态分类方面,20倍、40倍和60倍放大倍数下的F1分数分别达到了96.73%、98.55%和99.31%。此外,该模型在60倍放大倍数下检测细微顶体健康变化时的F1分数为99.8%。

讨论与结论

我们建立了一种综合方法,可快速收集并分类形态缺陷和顶体健康状况,无需手工计数或生物标志物标记。我们的研究强调了人工智能在精液诊断中的潜力,减少了技术人员的差异,简化了检测,并促进了其他无标记检测方法的开发。这种创新方法解决了阻碍生物标志物在精液分析中应用的障碍,为加强生殖健康评估提供了一条有前景的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验