Suppr超能文献

开发和验证一个从电子健康记录中自动填充病例报告表的开源管道:一项儿科多中心前瞻性研究。

Development and validation of an open-source pipeline for automatic population of case report forms from electronic health records: a pediatric multi-center prospective study.

机构信息

Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA.

Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.

出版信息

EBioMedicine. 2024 Oct;108:105337. doi: 10.1016/j.ebiom.2024.105337. Epub 2024 Sep 16.

Abstract

BACKGROUND

Clinical trials and registry studies are essential for advancing research and developing novel treatments. However, these studies rely on manual entry of thousands of variables for each patient. Repurposing real-world data can significantly simplify the data collection, reduce transcription errors, and make the data entry process more efficient, consistent, and cost-effective.

METHODS

We developed an open-source computational pipeline to collect laboratory and medication information from the electronic health record (EHR) data and populate case report forms. The pipeline was developed and validated with data from two independent pediatric hospitals in the US as part of the Long-terM OUtcomes after Multisystem Inflammatory Syndrome In Children (MUSIC) study. Our pipeline allowed the completion of two of the most time-consuming forms. We compared automatically extracted results with manually entered values in one hospital and applied the pipeline to a second hospital, where the output served as the primary data source for case report forms.

FINDINGS

We extracted and populated 51,845 laboratory and 4913 medication values for 159 patients in two hospitals participating in a prospective pediatric study. We evaluated pipeline performance against data for 104 patients manually entered by clinicians in one of the hospitals. The highest concordance was found during patient hospitalization, with 91.59% of the automatically extracted laboratory and medication values corresponding with the manually entered values. In addition to the successfully populated values, we identified an additional 13,396 laboratory and 567 medication values of interest for the study.

INTERPRETATION

The automatic data entry of laboratory and medication values during admission is feasible and has a high concordance with the manually entered data. By implementing this proof of concept, we demonstrate the quality of automatic data extraction and highlight the potential of secondary use of EHR data to advance medical science by improving data entry efficiency and expediting clinical research.

FUNDING

NIH Grant 1OT3HL147154-01, U24HL135691, UG1HL135685.

摘要

背景

临床试验和注册研究对于推进研究和开发新疗法至关重要。然而,这些研究依赖于为每个患者手动输入数千个变量。重用真实世界的数据可以显著简化数据收集,减少转录错误,并使数据录入过程更加高效、一致和具有成本效益。

方法

我们开发了一个开源计算管道,从电子健康记录(EHR)数据中收集实验室和药物信息,并填充病例报告表。该管道是在美国的两家独立儿童医院的数据的基础上开发和验证的,作为长期儿童多系统炎症综合征后结局(MUSIC)研究的一部分。我们的管道允许完成两个最耗时的表格。我们比较了一家医院中自动提取的结果与手动输入的值,并将该管道应用于第二家医院,其中输出作为病例报告表的主要数据源。

发现

我们从参与前瞻性儿科研究的两家医院的 159 名患者中提取并填充了 51845 个实验室和 4913 个药物值。我们针对一家医院的 104 名临床医生手动输入的数据评估了管道的性能。在患者住院期间,自动提取的实验室和药物值与手动输入的值的一致性最高,达到了 91.59%。除了成功填充的值外,我们还确定了研究中另外 13396 个实验室和 567 个药物值。

解释

在入院期间自动输入实验室和药物值是可行的,并且与手动输入的数据具有很高的一致性。通过实施这一概念验证,我们展示了自动数据提取的质量,并强调了通过提高数据录入效率和加速临床研究来利用电子健康记录数据推进医学科学的潜力。

资助

NIH 拨款 1OT3HL147154-01、U24HL135691、UG1HL135685。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/add7/11421260/3fbe5d9c2353/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验