Suppr超能文献

深度学习辅助的热电凝胶纤维传感器,用于自供电鼻腔呼吸监测。

Deep-learning-assisted thermogalvanic hydrogel fiber sensor for self-powered in-nostril respiratory monitoring.

机构信息

School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.

Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan.

出版信息

J Colloid Interface Sci. 2025 Jan 15;678(Pt C):143-149. doi: 10.1016/j.jcis.2024.09.132. Epub 2024 Sep 14.

Abstract

Direct and consistent monitoring of respiratory patterns is crucial for disease prognostication. Although the wired clinical respiratory monitoring apparatus can operate accurately, the existing defects are evident, such as the indispensability of an external power supply, low mobility, poor comfort, and limited monitoring timeframes. Here, we present a self-powered in-nostril hydrogel sensor for long-term non-irritant anti-interference respiratory monitoring, which is developed from a dual-network binary-solvent thermogalvanic polyvinyl alcohol hydrogel fiber (d = 500 μm, L=30 mm) with Fe/Fe ions serving as a redox couple, which can generate a thermoelectrical signal in the nasal cavity based on the temperature difference between the exhaled gas and skin as well as avoid interference from the external environment. Due to strong hydrogen bonding between solvent molecules, the sensor retains over 90 % of its moisture after 14 days, exhibiting great potential in wearable respiratory surveillance. With the assistance of deep learning, the hydrogel fiber-based respiration monitoring strategy can actively recognize seven typical breathing patterns with an accuracy of 97.1 % by extracting the time sequence and dynamic parameters of the thermoelectric signals generated by respiration, providing an alert for high-risk respiratory symptoms. This work demonstrates the significant potential of thermogalvanic gels for next-generation wearable bioelectronics for early screening of respiratory diseases.

摘要

直接且持续的呼吸模式监测对于疾病预后至关重要。尽管有线临床呼吸监测设备能够准确运行,但也存在明显的缺陷,例如必须依赖外部电源、移动性差、舒适度低以及监测时间有限等。在这里,我们提出了一种自供电的鼻腔内水凝胶传感器,用于长期非刺激性抗干扰呼吸监测,该传感器由双网络二元溶剂热电聚已醇水凝胶纤维(d=500μm,L=30mm)制成,以 Fe/Fe 离子作为氧化还原对,可基于呼出气体和皮肤之间的温差在鼻腔内产生热电信号,同时避免外部环境的干扰。由于溶剂分子之间存在强氢键,传感器在 14 天后仍保留超过 90%的水分,在可穿戴呼吸监测方面具有巨大的潜力。借助深度学习,基于水凝胶纤维的呼吸监测策略可以通过提取呼吸产生的热电信号的时间序列和动态参数,主动识别七种典型的呼吸模式,准确率达 97.1%,为高危呼吸症状提供警报。这项工作表明热电凝胶在下一代可穿戴生物电子学方面具有重要的应用潜力,可用于早期筛查呼吸疾病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验