Suppr超能文献

基于热致电流水凝胶的机器学习辅助自供电身份识别用于智能安全

Machine Learning Assisted Self-Powered Identity Recognition Based on Thermogalvanic Hydrogel for Intelligent Security.

作者信息

Ma Xueliang, Wang Wenxu, Cui Xiaojing, Li Yunsheng, Yang Kun, Huang Zhiquan, Zhang Hulin

机构信息

College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.

School of Physics and Information Engineering, Shanxi Normal University, Taiyuan, 030031, China.

出版信息

Small. 2024 Sep;20(37):e2402700. doi: 10.1002/smll.202402700. Epub 2024 May 10.

Abstract

Identity recognition as the first barrier of intelligent security plays a vital role, which is facing new challenges that are unable to meet the need of intelligent era due to low accuracy, complex configuration and dependence on power supply. Here, a finger temperature-driven intelligent identity recognition strategy is presented based on a thermogalvanic hydrogel (TGH) by actively discerning biometric characteristics of fingers. The TGH is a dual network PVA/Agar hydrogel in an HO/glycerol binary solvent with [Fe(CN)] as a redox couple. Using a concave-arranged TGH array, the characteristics of users can be distinguished adequately even under an open environment by extracting self-existent intrinsic temperature features from five typical sites of fingers. Combined with machine learning, the TGH array can recognize different users with a high average accuracy of 97.6%. This self-powered identity recognition strategy is further applied to a smart lock, attaining a more reliable security protection from biometric characteristics than bare passwords. This work provides a promising solution for achieving better identity recognition, which has great advantages in intelligent security and human-machine interaction toward future Internet of everything.

摘要

身份识别作为智能安全的第一道防线起着至关重要的作用,但其正面临着新的挑战,由于准确率低、配置复杂以及对电源的依赖,无法满足智能时代的需求。在此,基于热致电流水凝胶(TGH),通过主动识别手指的生物特征,提出了一种手指温度驱动的智能身份识别策略。TGH是一种在HO/甘油二元溶剂中以[Fe(CN)]作为氧化还原对的双网络PVA/琼脂水凝胶。使用凹形排列的TGH阵列,通过从手指的五个典型部位提取自身存在的固有温度特征,即使在开放环境下也能充分区分用户特征。结合机器学习,TGH阵列能够以97.6%的高平均准确率识别不同用户。这种自供电身份识别策略进一步应用于智能锁,与单纯密码相比,从生物特征上获得了更可靠的安全保护。这项工作为实现更好的身份识别提供了一个有前景的解决方案,在面向未来万物互联的智能安全和人机交互方面具有巨大优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验