Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634, USA.
Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA.
J Mech Behav Biomed Mater. 2024 Dec;160:106735. doi: 10.1016/j.jmbbm.2024.106735. Epub 2024 Sep 10.
Tendon-bone fibrocartilaginous insertion, or enthesis, is a specialized interfacial region that connects tendon and bone, effectively transferring forces while minimizing stress concentrations. Previous studies have shown that insertion features gradient mineralization and branching fiber structure, which are believed to play critical roles in its excellent function. However, the specific structure-function relationship, particularly the effects of mineralization and structure at the mesoscale fiber level on the properties and function of insertion, remains poorly understood. In this study, we develop mesoscale computational models of the distinct fiber organization at tendon-bone insertions, capturing the branching network from tendon to interface fibers and the different mineralization scales. We specifically analyze three key descriptors: the mineralization scale of interface fibers, the mean, and relative standard deviation of the local branching angles of interface fibers. Tensile test simulations on insertion models with varying mineralization scales of interface fibers and structures are performed to mimic the primary loading condition applied to the insertion. We measure and analyze five representative mechanical properties: Young's modulus, strength, toughness, resilience, and failure strain. Our results reveal that mechanical properties are significantly influenced by the three key descriptors, with tradeoffs observed between mutually exclusive properties. For instance, strength and resilience plateau beyond a certain mineralization scale, while failure strain and Young's modulus exhibit monotonic decreasing and increasing trends, respectively. Consequently, there exists an optimal mineralization scale for toughness due to these tradeoffs. By analyzing the mesoscale deformation and failure mechanisms from simulation trajectories, we identify three fracture regimes closely related to the trends in mechanical properties, supporting the observed tradeoffs. Additionally, we examine in detail the effects of the mean and relative standard deviation of local branching angles on mechanical properties and deformation mechanisms. Overall, our study enhances the fundamental understanding of the composition-structure-function relationships at the tendon-bone insertion, complementing recent experimental studies. The mechanical insights from our work have the potential to guide the future biomimetic design of fibrillar adhesives and interfaces for joining soft and hard materials.
肌腱-骨纤维软骨插入物,或称为附着点,是连接肌腱和骨骼的特殊界面区域,它能有效传递力,同时将应力集中最小化。先前的研究表明,插入物具有梯度矿化和分支纤维结构,这被认为对其优异的功能起着关键作用。然而,其具体的结构-功能关系,特别是矿化和中尺度纤维结构对插入物特性和功能的影响,仍知之甚少。在这项研究中,我们建立了肌腱-骨附着点独特纤维组织的中尺度计算模型,捕捉了从肌腱到界面纤维的分支网络以及不同的矿化尺度。我们特别分析了三个关键描述符:界面纤维的矿化尺度、界面纤维局部分支角度的平均值和相对标准偏差。通过对具有不同界面纤维矿化尺度和结构的插入模型进行拉伸测试模拟,以模拟作用于插入物的主要加载条件。我们测量和分析了五个代表性的力学性能:杨氏模量、强度、韧性、弹性和破坏应变。研究结果表明,力学性能受这三个关键描述符的显著影响,相互排斥的特性之间存在权衡。例如,在一定的矿化尺度之后,强度和弹性达到平台,而破坏应变和杨氏模量分别呈单调递减和递增趋势。因此,由于这些权衡,韧性存在一个最佳的矿化尺度。通过分析模拟轨迹中的中尺度变形和破坏机制,我们确定了与力学性能趋势密切相关的三个断裂区,支持了观察到的权衡。此外,我们详细研究了局部分支角度平均值和相对标准偏差对力学性能和变形机制的影响。总的来说,本研究增强了对肌腱-骨插入物中组成-结构-功能关系的基本理解,补充了最近的实验研究。我们的工作提供的力学见解有潜力指导用于连接软质和硬质材料的纤维状粘合剂和界面的未来仿生设计。