Suppr超能文献

肌腱与骨附着处矿物质和胶原蛋白的功能分级

Functional grading of mineral and collagen in the attachment of tendon to bone.

作者信息

Genin Guy M, Kent Alistair, Birman Victor, Wopenka Brigitte, Pasteris Jill D, Marquez Pablo J, Thomopoulos Stavros

机构信息

Department of Mechanical Aerospace and Structural Engineering, Washington University, St. Louis, Missouri 63130, USA.

出版信息

Biophys J. 2009 Aug 19;97(4):976-85. doi: 10.1016/j.bpj.2009.05.043.

Abstract

Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural "soft tissue") to bone (a stiff, structural "hard tissue"). The goal of our study was to develop biomechanical models to describe how the tendon-to-bone insertion derives its mechanical properties. We examined the tendon-to-bone insertion and found two factors that give the tendon-to-bone transition a unique grading in mechanical properties: 1), a gradation in mineral concentration, measured by Raman spectroscopy; and 2), a gradation in collagen fiber orientation, measured by polarized light microscopy. Our measurements motivate a new physiological picture of the tissue that achieves this transition, the tendon-to-bone insertion, as a continuous, functionally graded material. Our biomechanical model suggests that the experimentally observed increase in mineral accumulation within collagen fibers can provide significant stiffening of the partially mineralized fibers, but only for concentrations of mineral above a "percolation threshold" corresponding to formation of a mechanically continuous mineral network within each collagen fiber (e.g., the case of mineral connectivity extending from one end of the fiber to the other). Increasing dispersion in the orientation distribution of collagen fibers from tendon to bone is a second major determinant of tissue stiffness. The combination of these two factors may explain the nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion reported previously. Our models explain how tendon-to-bone attachment is achieved through a functionally graded material composition, and provide targets for tissue engineered surgical interventions and biomimetic material interfaces.

摘要

不同材料的附着是一项重大挑战,因为在它们的界面处可能会产生高水平的局部应力。在自然界最极端的界面之一存在着解决这个问题的有效生物学方法:肌腱(一种柔顺的、结构性的“软组织”)与骨骼(一种坚硬的、结构性的“硬组织”)的附着。我们研究的目标是建立生物力学模型,以描述肌腱与骨骼的连接处是如何获得其力学性能的。我们检查了肌腱与骨骼的连接处,发现有两个因素赋予了肌腱与骨骼过渡区域独特的力学性能分级:1)通过拉曼光谱测量的矿物质浓度梯度;2)通过偏振光显微镜测量的胶原纤维取向梯度。我们的测量结果促使人们对实现这种过渡的组织——肌腱与骨骼的连接处——形成一种新的生理学认识,即它是一种连续的、功能梯度材料。我们的生物力学模型表明,实验观察到的胶原纤维内矿物质积累的增加可以使部分矿化的纤维显著变硬,但前提是矿物质浓度要高于“渗流阈值”,该阈值对应于在每根胶原纤维内形成机械连续的矿物质网络(例如,矿物质连通性从纤维一端延伸到另一端的情况)。从肌腱到骨骼,胶原纤维取向分布的分散性增加是组织刚度的第二个主要决定因素。这两个因素的结合可能解释了先前报道的肌腱与骨骼连接处长度上刚度的非单调变化。我们的模型解释了肌腱与骨骼的附着是如何通过功能梯度材料组成来实现的,并为组织工程手术干预和仿生材料界面提供了目标。

相似文献

3
4
Mineral distributions at the developing tendon enthesis.发育中的肌腱附着处的矿物质分布。
PLoS One. 2012;7(11):e48630. doi: 10.1371/journal.pone.0048630. Epub 2012 Nov 9.
5
9
Toughening of fibrous scaffolds by mobile mineral deposits.通过移动矿物质沉积使纤维支架增韧。
Acta Biomater. 2017 Aug;58:492-501. doi: 10.1016/j.actbio.2017.05.033. Epub 2017 May 19.
10
Micro-mechanical properties of the tendon-to-bone attachment.肌腱与骨附着处的微观力学特性。
Acta Biomater. 2017 Jul 1;56:25-35. doi: 10.1016/j.actbio.2017.01.037. Epub 2017 Jan 11.

引用本文的文献

9
Achieving tendon enthesis regeneration across length scales.在不同长度尺度上实现肌腱附着点再生。
Curr Opin Biomed Eng. 2024 Sep;31. doi: 10.1016/j.cobme.2024.100547. Epub 2024 May 22.

本文引用的文献

3
Mechanical properties of native and cross-linked type I collagen fibrils.天然和交联I型胶原纤维的力学性能。
Biophys J. 2008 Mar 15;94(6):2204-11. doi: 10.1529/biophysj.107.111013. Epub 2007 Nov 21.
4
5
6
An estimate of anisotropic poroelastic constants of an osteon.骨单位各向异性孔隙弹性常数的估计值。
Biomech Model Mechanobiol. 2008 Feb;7(1):13-26. doi: 10.1007/s10237-006-0071-9. Epub 2007 Feb 13.
7
Cooperative deformation of mineral and collagen in bone at the nanoscale.纳米尺度下骨中矿物质与胶原蛋白的协同变形
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17741-6. doi: 10.1073/pnas.0604237103. Epub 2006 Nov 9.
8
The 10+4 microfibril structure of thin cartilage fibrils.薄软骨纤维的10 + 4微原纤维结构。
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17249-54. doi: 10.1073/pnas.0608417103. Epub 2006 Nov 6.
9
Micromechanical response of mineral and collagen phases in bone.骨中矿物质和胶原相的微机械响应。
J Struct Biol. 2007 Feb;157(2):365-70. doi: 10.1016/j.jsb.2006.09.001. Epub 2006 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验