Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong 226000, People's Republic of China.
Biofabrication. 2021 Apr 2;13(3). doi: 10.1088/1758-5090/abd159.
The tendon-bone interface (TBI) in rotator cuffs exhibits a structural and compositional gradient integrated through the fibrocartilaginous transition. Owing to restricted healing capacity, functional regeneration of the TBI is considered a great clinical challenge. Here, we establish a novel therapeutic platform based on 3D cell-printing and tissue-specific bioinks to achieve spatially-graded physiology for functional TBI regeneration. The 3D cell-printed TBI patch constructs are created via a spatial arrangement of cell-laden tendon and bone-specific bioinks in a graded manner, approximating a multi-tissue fibrocartilaginous interface. This TBI patch offers a cell favorable microenvironment, including high cell viability, proliferative capacity, and zonal-specific differentiation of encapsulated stem cells for TBI formation. Furthermore,application of spatially-graded TBI patches with stem cells demonstrates their regenerative potential, indicating that repair with 3D cell-printed TBI patch significantly accelerates and promotes TBI healing in a rat chronic tear model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration using 3D cell-printing and tissue-specific decellularized extracellular matrix bioink-based approach.
肩袖肌腱骨界面(TBI)通过纤维软骨过渡呈现出结构和组成的梯度。由于愈合能力有限,TBI 的功能再生被认为是一个巨大的临床挑战。在这里,我们建立了一个基于 3D 细胞打印和组织特异性生物墨水的新型治疗平台,以实现 TBI 功能再生的空间分级生理学。通过以分级方式对细胞负载肌腱和骨特异性生物墨水进行空间排列,创建了 3D 细胞打印的 TBI 贴片构建体,模拟了多组织纤维软骨界面。该 TBI 贴片为细胞提供了有利的微环境,包括高细胞活力、增殖能力以及封装干细胞的区带特异性分化,以形成 TBI。此外,应用具有干细胞的空间分级 TBI 贴片显示出其再生潜力,表明 3D 细胞打印的 TBI 贴片修复显著加速并促进了大鼠慢性撕裂模型中的 TBI 愈合。因此,我们的研究结果提出了一种使用 3D 细胞打印和基于组织特异性去细胞化细胞外基质生物墨水的方法进行 TBI 功能再生的新治疗策略。