Suppr超能文献

基于机器学习的生物传感器在食品安全监测中的研究进展:综述。

Progress of machine learning-based biosensors for the monitoring of food safety: A review.

机构信息

College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.

出版信息

Biosens Bioelectron. 2025 Jan 1;267:116782. doi: 10.1016/j.bios.2024.116782. Epub 2024 Sep 12.

Abstract

Rapid urbanization and growing food demand caused people to be concerned about food safety. Biosensors have gained considerable attention for assessing food safety due to selectivity, and sensitivity but poor stability inherently limits their application. The emergence of machine learning (ML) has enhanced the efficiency of different sensors for food safety assessment. The ML combined with various noninvasive biosensors has been implemented efficiently to monitor food safety by considering the stability of bio-recognition molecules. This review comprehensively summarizes the application of ML-powered biosensors to investigate food safety. Initially, different detector-based biosensors using biological molecules with their advantages and disadvantages and biosensor-related various ML algorithms for food safety monitoring have been discussed. Next, the application of ML-powered biosensors to detect antibiotics, foodborne microorganisms, mycotoxins, pesticides, heavy metals, anions, and persistent organic pollutants has been highlighted for the last five years. The challenges and prospects have also been deliberated. This review provides a new prospect in developing various biosensors for multi-food contaminants powered by suitable ML algorithms to monitor in-situ food safety.

摘要

快速的城市化和不断增长的粮食需求引起了人们对食品安全的关注。由于选择性和灵敏度高,生物传感器在评估食品安全方面受到了相当大的关注,但固有稳定性差限制了其应用。机器学习(ML)的出现提高了不同传感器用于食品安全评估的效率。通过考虑生物识别分子的稳定性,将 ML 与各种非侵入式生物传感器相结合,已被有效地用于监测食品安全。本综述全面总结了基于 ML 的生物传感器在食品安全研究中的应用。首先,讨论了使用生物分子的不同基于检测器的生物传感器及其优缺点,以及用于食品安全监测的生物传感器相关各种 ML 算法。接下来,重点介绍了过去五年中基于 ML 的生物传感器在检测抗生素、食源性病原体、真菌毒素、农药、重金属、阴离子和持久性有机污染物方面的应用。还审议了挑战和前景。本综述为开发适合 ML 算法的各种多食品污染物生物传感器提供了新的前景,以监测现场食品安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验