Suppr超能文献

用于价值的半正交子空间介导了绑定与泛化之间的权衡。

Semi-orthogonal subspaces for value mediate a binding and generalization trade-off.

作者信息

Johnston W Jeffrey, Fine Justin M, Yoo Seng Bum Michael, Ebitz R Becket, Hayden Benjamin Y

机构信息

Center for Theoretical Neuroscience and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.

Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.

出版信息

Nat Neurosci. 2024 Nov;27(11):2218-2230. doi: 10.1038/s41593-024-01758-5. Epub 2024 Sep 17.

Abstract

When choosing between options, we must associate their values with the actions needed to select them. We hypothesize that the brain solves this binding problem through neural population subspaces. Here, in macaques performing a choice task, we show that neural populations in five reward-sensitive regions encode the values of offers presented on the left and right in distinct subspaces. This encoding is sufficient to bind offer values to their locations while preserving abstract value information. After offer presentation, all areas encode the value of the first and second offers in orthogonal subspaces; this orthogonalization also affords binding. Our binding-by-subspace hypothesis makes two new predictions confirmed by the data. First, behavioral errors should correlate with spatial, but not temporal, neural misbinding. Second, behavioral errors should increase when offers have low or high values, compared to medium values, even when controlling for value difference. Together, these results support the idea that the brain uses semi-orthogonal subspaces to bind features.

摘要

在选项之间进行选择时,我们必须将它们的值与选择这些选项所需的动作联系起来。我们假设大脑通过神经群体子空间解决这个绑定问题。在这里,在执行选择任务的猕猴中,我们表明五个奖励敏感区域的神经群体在不同的子空间中编码左右两侧所呈现选项的值。这种编码足以将选项值与其位置绑定,同时保留抽象的价值信息。在呈现选项后,所有区域在正交子空间中编码第一个和第二个选项的值;这种正交化也实现了绑定。我们的子空间绑定假说做出了两个新的预测,这些预测得到了数据的证实。首先,行为错误应该与空间而非时间上的神经错误绑定相关。其次,即使在控制了价值差异的情况下,与中等价值相比,当选项具有低价值或高价值时,行为错误应该会增加。总之,这些结果支持了大脑使用半正交子空间来绑定特征的观点。

相似文献

4
Abstract Value Encoding in Neural Populations But Not Single Neurons.群体神经元而非单个神经元中的抽象价值编码。
J Neurosci. 2023 Jun 21;43(25):4650-4663. doi: 10.1523/JNEUROSCI.1954-22.2023. Epub 2023 May 19.
9
Neuronal Activity in the Primate Amygdala during Economic Choice.灵长类动物杏仁核在经济选择中的神经元活动。
J Neurosci. 2020 Feb 5;40(6):1286-1301. doi: 10.1523/JNEUROSCI.0961-19.2019. Epub 2019 Dec 23.
10
Neural Population Dynamics Underlying Expected Value Computation.神经群体动力学在预期价值计算中的作用。
J Neurosci. 2021 Feb 24;41(8):1684-1698. doi: 10.1523/JNEUROSCI.1987-20.2020. Epub 2021 Jan 13.

引用本文的文献

1
6
Rational inattention in neural coding for economic choice.经济决策神经编码中的理性疏忽
bioRxiv. 2024 Sep 23:2024.09.20.614193. doi: 10.1101/2024.09.20.614193.
7
The neural basis of swap errors in working memory.工作记忆中交换错误的神经基础。
bioRxiv. 2023 Oct 23:2023.10.09.561584. doi: 10.1101/2023.10.09.561584.

本文引用的文献

2
The neural basis of swap errors in working memory.工作记忆中交换错误的神经基础。
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2401032121. doi: 10.1073/pnas.2401032121. Epub 2024 Aug 5.
4
Representation and computation in visual working memory.视觉工作记忆中的表示和计算。
Nat Hum Behav. 2024 Jun;8(6):1016-1034. doi: 10.1038/s41562-024-01871-2. Epub 2024 Jun 7.
7
Orbitofrontal cortex control of striatum leads economic decision-making.眶额皮层对纹状体的控制导致经济决策。
Nat Neurosci. 2023 Sep;26(9):1566-1574. doi: 10.1038/s41593-023-01409-1. Epub 2023 Aug 17.
9
Abstract Value Encoding in Neural Populations But Not Single Neurons.群体神经元而非单个神经元中的抽象价值编码。
J Neurosci. 2023 Jun 21;43(25):4650-4663. doi: 10.1523/JNEUROSCI.1954-22.2023. Epub 2023 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验