El Khalfi Abdelmajid, Ridani Kaoutar, Et-Taya Lhoussayne, El Boukili Abderrahman, Mansour Najim, Elmaimouni Lahoucine, Rahman Md Ferdous, Benami Abdellah
OTEA, Department of Engineering Sciences, Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, BP 509 Boutalamine, 52000 Errachidia, Morocco.
PMT, Department of Engineering Sciences, Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, BP 509 Boutalamine, 52000 Errachidia, Morocco.
Langmuir. 2024 Oct 1;40(39):20352-20367. doi: 10.1021/acs.langmuir.4c01472. Epub 2024 Sep 18.
Inorganic solar cells based on the binary-type metal chalcogenide semiconductor, particularly SbSe, have recently garnered significant interest due to their abundant and nontoxic natural elements, strong thermal stability, and favorable optoelectronic properties. Single-absorber solar cells using antimony selenide have been the most common choice to date but have shown only limited efficiency in converting sunlight into electricity. The primary aim of this research is to examine a device structure that demonstrates an enhanced efficiency. The study explores the potential of utilizing CZTGSe as a secondary absorber layer to enhance photovoltaic performance metrics. The basic solar cell structure studied is FTO/CdS/SbSe/CuO/Au, which has a power conversion efficiency of 24.94%. By conducting simulations using SCAPS-1D, an in-depth analysis of the proposed dual-absorber structure (FTO/WS/SbSe/CZTGSe/CuO/Au) was carried out. Solar cell efficiency was enhanced through the adjustment of the Ge concentration in the secondary CZTGSe absorber with various electron transport layers (CdS, ZnSe, WS, and ZnOS). The findings indicate that optimal efficiency is achieved at a Ge concentration = 0.8, with WS emerging as the most effective among the proposed ETLs. The physical characteristics of the layers, including their thickness, doping density, and impurity level, as well as the interfaces, were then modified to improve device performance. The photovoltaic device achieves a fill factor of 88.31%, a of 1.117 V, a of 38.23 mA/cm, and an efficiency of 37.76% when all factors are perfectly optimized. This study proposes that CZTGSe has the potential to be utilized in creating a stable, cost-efficient SbSe solar device with high efficiency.
基于二元型金属硫族化物半导体,特别是锑硒(SbSe)的无机太阳能电池,由于其天然元素丰富、无毒、热稳定性强以及良好的光电特性,最近引起了广泛关注。迄今为止,使用硒化锑的单吸收体太阳能电池一直是最常见的选择,但在将阳光转化为电能方面效率有限。本研究的主要目的是研究一种能提高效率的器件结构。该研究探索了利用CZTGSe作为二次吸收层来提高光伏性能指标的潜力。所研究的基本太阳能电池结构为FTO/CdS/SbSe/CuO/Au,其功率转换效率为24.94%。通过使用SCAPS-1D进行模拟,对所提出的双吸收体结构(FTO/WS/SbSe/CZTGSe/CuO/Au)进行了深入分析。通过调整二次CZTGSe吸收体中锗的浓度以及使用各种电子传输层(CdS、ZnSe、WS和ZnOS)提高了太阳能电池效率。研究结果表明,当锗浓度 = 0.8时可实现最佳效率,在所提出的电子传输层中WS最为有效。然后对各层的物理特性,包括其厚度、掺杂密度和杂质水平以及界面进行了修改,以提高器件性能。当所有因素都得到完美优化时,该光电器件的填充因子为88.31%,开路电压为1.117 V,短路电流密度为38.23 mA/cm²,效率为37.76%。本研究表明,CZTGSe有潜力用于制造高效、稳定且经济高效的锑硒太阳能器件。