Suppr超能文献

HCBiLSTM-WOA:用于自闭症谱系障碍的基于水优化算法的混合卷积双向长短期记忆模型

HCBiLSTM-WOA: hybrid convolutional bidirectional long short-term memory with water optimization algorithm for autism spectrum disorder.

作者信息

Kavitha V, Siva R

机构信息

Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.

出版信息

Comput Methods Biomech Biomed Engin. 2025 May;28(6):818-840. doi: 10.1080/10255842.2024.2399016. Epub 2024 Sep 18.

Abstract

Autism Spectrum Disorder (ASD) is a type of brain developmental disability that cannot be completely treated, but its impact can be reduced through early interventions. Early identification of neurological disorders will better assist in preserving the subjects' physical and mental health. Although numerous research works exist for detecting autism spectrum disorder, they are cumbersome and insufficient for dealing with real-time datasets. Therefore, to address these issues, this paper proposes an ASD detection mechanism using a novel Hybrid Convolutional Bidirectional Long Short-Term Memory based Water Optimization Algorithm (HCBiLSTM-WOA). The prediction efficiency of the proposed HCBiLSTM-WOA method is investigated using real-time ASD datasets containing both ASD and non-ASD data from toddlers, children, adolescents, and adults. The inconsistent and incomplete representations of the raw ASD dataset are modified using preprocessing procedures such as handling missing values, predicting outliers, data discretization, and data reduction. The preprocessed data obtained is then fed into the proposed HCBiLSTM-WOA classification model to effectively predict the non-ASD and ASD classes. The initially randomly initialized hyperparameters of the HCBiLSTM model are adjusted and tuned using the water optimization algorithm (WOA) to increase the prediction accuracy of ASD. After detecting non-ASD and ASD classes, the HCBiLSTM-WOA method further classifies the ASD cases into respective stages based on the autistic traits observed in toddlers, children, adolescents, and adults. Also, the ethical considerations that should be taken into account when campaign ASD risk communication are complex due to the data privacy and unpredictability surrounding ASD risk factors. The fusion of sophisticated deep learning techniques with an optimization algorithm presents a promising framework for ASD diagnosis. This innovative approach shows potential in effectively managing intricate ASD data, enhancing diagnostic precision, and improving result interpretation. Consequently, it offers clinicians a tool for early and precise detection, allowing for timely intervention in ASD cases. Moreover, the performance of the proposed HCBiLSTM-WOA method is evaluated using various performance indicators such as accuracy, kappa statistics, sensitivity, specificity, log loss, and Area Under the Receiver Operating Characteristics (AUROC). The simulation results reveal the superiority of the proposed HCBiLSTM-WOA method in detecting ASD compared to other existing methods. The proposed method achieves a higher ASD prediction accuracy of about 98.53% than the other methods being compared.

摘要

自闭症谱系障碍(ASD)是一种无法完全治愈的大脑发育障碍,但可以通过早期干预来减轻其影响。早期识别神经障碍将更好地有助于保护受试者的身心健康。尽管存在许多用于检测自闭症谱系障碍的研究工作,但它们处理起来繁琐,且不足以处理实时数据集。因此,为了解决这些问题,本文提出了一种基于新型混合卷积双向长短期记忆的水优化算法(HCBiLSTM-WOA)的ASD检测机制。使用包含来自幼儿、儿童、青少年和成人的ASD和非ASD数据的实时ASD数据集,研究了所提出的HCBiLSTM-WOA方法的预测效率。原始ASD数据集不一致和不完整的表示通过诸如处理缺失值、预测异常值、数据离散化和数据约简等预处理程序进行修改。然后将获得的预处理数据输入到所提出的HCBiLSTM-WOA分类模型中,以有效地预测非ASD和ASD类别。使用水优化算法(WOA)对HCBiLSTM模型最初随机初始化的超参数进行调整和调优,以提高ASD的预测准确性。在检测到非ASD和ASD类别后,HCBiLSTM-WOA方法根据在幼儿、儿童、青少年和成人中观察到的自闭症特征,将ASD病例进一步分类到各自的阶段。此外,由于围绕ASD风险因素的数据隐私和不可预测性,在开展ASD风险沟通时应考虑的伦理问题很复杂。复杂的深度学习技术与优化算法的融合为ASD诊断提供了一个有前景的框架。这种创新方法在有效管理复杂的ASD数据、提高诊断精度和改善结果解释方面显示出潜力。因此,它为临床医生提供了一种早期精确检测的工具,从而能够对ASD病例进行及时干预。此外,使用各种性能指标(如准确率、kappa统计量、灵敏度、特异性、对数损失和受试者工作特征曲线下面积(AUROC))对所提出的HCBiLSTM-WOA方法的性能进行评估。仿真结果表明,与其他现有方法相比,所提出的HCBiLSTM-WOA方法在检测ASD方面具有优越性。所提出的方法比其他被比较的方法实现了更高的ASD预测准确率,约为98.53%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验