Suppr超能文献

基于分数鲸鱼驱动训练的优化实现了用于检测自闭症谱系障碍的迁移学习。

Fractional whale driving training-based optimization enabled transfer learning for detecting autism spectrum disorder.

作者信息

Gv Sriramakrishnan, Paul P Mano, Gudimindla Hemachandra, Rachapudi Venubabu

机构信息

Department of Computer Science and Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India.

Department of IT, ACED, Alliance University, India.

出版信息

Comput Biol Chem. 2024 Dec;113:108200. doi: 10.1016/j.compbiolchem.2024.108200. Epub 2024 Aug 30.

Abstract

Autism Spectrum Disorder (ASD) is a neurological illness that degrades communication and interaction among others. Autism can be detected at any stage. Early detection of ASD is important in preventing the communication, interaction and behavioral outcomes of individuals. Hence, this research introduced the Fractional Whale-driving Driving Training-based Based Optimization with Convolutional Neural Network-based Transfer learning (FWDTBO-CNN_TL) for identifying ASD. Here, the FWDTBO is modelled by the incorporation of Fractional calculus (FC), Whale optimization algorithm (WOA) and Driving Training-based Optimization (DTBO) that trains the hyperparameters of CNN-TL. Moreover, the Convolutional Neural Networks (CNN) utilize the hyperparameters from trained models, like Alex Net and Shuffle Net in such a way that the CNN-TL is designed. To improve the detection efficiency, the nub region was extracted and carried out with the functional connectivity-based Whale Driving Training Optimization (WDTBO) algorithm. Moreover, the TL is tuned by the FWDTBO algorithm. The result reveals that the ASD detection technique, FWDTBO-CNN-TL acquired 90.7 % accuracy, 95.4 % sensitivity, 93.7 % specificity and 93 % f-measure with the ABIDE-II dataset.

摘要

自闭症谱系障碍(ASD)是一种会影响包括沟通和互动等方面的神经疾病。自闭症可在任何阶段被检测出来。早期检测ASD对于预防个体的沟通、互动和行为结果很重要。因此,本研究引入了基于分数阶鲸鱼驱动训练优化与基于卷积神经网络的迁移学习(FWDTBO-CNN_TL)来识别ASD。在此,FWDTBO通过结合分数阶微积分(FC)、鲸鱼优化算法(WOA)和基于驱动训练的优化(DTBO)进行建模,后者用于训练CNN-TL的超参数。此外,卷积神经网络(CNN)利用来自训练模型(如Alex Net和Shuffle Net)的超参数来设计CNN-TL。为提高检测效率,提取了核心区域并使用基于功能连接性的鲸鱼驱动训练优化(WDTBO)算法进行处理。此外,迁移学习由FWDTBO算法进行调整。结果表明,ASD检测技术FWDTBO-CNN-TL在ABIDE-II数据集上获得了90.7%的准确率、95.4%的灵敏度、93.7%的特异性和93%的F值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验