Amity Institute of Biotechnology, Amity University, Noida 201301, India.
Department of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India.
Mol Pharm. 2024 Oct 7;21(10):4827-4848. doi: 10.1021/acs.molpharmaceut.4c00595. Epub 2024 Sep 18.
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
水凝胶由亲水聚合物网络组成,由于其高含水量、生物相容性和可调节的特性,已成为生物医学应用中的多功能材料。它们模拟天然组织环境,提高细胞活力和功能。水凝胶的可调物理特性使其能够定制抗菌生物材料、伤口敷料、癌症治疗和组织工程支架。它们对生理刺激的响应能力能够实现治疗药物的控制释放,而其多孔结构则支持营养扩散和废物清除,促进组织再生和修复。在伤口愈合中,水凝胶提供湿润的环境,促进细胞迁移,并输送生物活性物质和抗生素,从而加速愈合过程。在癌症治疗中,它们提供了靶向肿瘤的局部药物输送系统,最大限度地减少了系统毒性并提高了治疗效果。眼部治疗受益于水凝胶形成隐形眼镜和药物输送系统的能力,这些系统能够长时间与眼表面保持接触,从而改善各种眼部疾病的治疗效果。在粘膜给药中,水凝胶促进了穿过粘膜屏障的治疗药物的给药,确保了药物的持续释放和生物利用度的提高。组织再生将水凝胶视为模仿细胞外基质的支架,支持细胞生长和分化,以修复受损组织。同样,在骨再生中,负载有生长因子和干细胞的水凝胶促进成骨作用并加速骨愈合。本文重点介绍了水凝胶在各种生物医学应用中的最新进展,这得益于其针对特定治疗需求进行工程设计的能力以及与生物组织的交互特性。
Mol Pharm. 2024-10-7
ACS Appl Mater Interfaces. 2021-7-21
Future Med Chem. 2011-11
Biotechnol J. 2019-11-14
ACS Appl Mater Interfaces. 2020-8-19
Carbohydr Polym. 2022-5-1
Naunyn Schmiedebergs Arch Pharmacol. 2025-7-15
Acta Biomater. 2023-12
Nat Mater. 2023-7
Pharmaceutics. 2023-1-19
Int J Mol Sci. 2023-2-15
Mater Today Bio. 2022-11-19
J Nanobiotechnology. 2022-11-16