Saavedra Juan Pablo, Droppelmann Guillermo, Jorquera Carlos, Feijoo Felipe
School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
Clínica MEDS, Santiago, Chile.
Front Med (Lausanne). 2024 Sep 3;11:1416169. doi: 10.3389/fmed.2024.1416169. eCollection 2024.
Goutallier's fatty infiltration of the supraspinatus muscle is a critical condition in degenerative shoulder disorders. Deep learning research primarily uses manual segmentation and labeling to detect this condition. Employing unsupervised training with a hybrid framework of segmentation and classification could offer an efficient solution.
To develop and assess a two-step deep learning model for detecting the region of interest and categorizing the magnetic resonance image (MRI) supraspinatus muscle fatty infiltration according to Goutallier's scale.
A retrospective study was performed from January 1, 2019 to September 20, 2020, using 900 MRI T2-weighted images with supraspinatus muscle fatty infiltration diagnoses. A model with two sequential neural networks was implemented and trained. The first sub-model automatically detects the region of interest using a U-Net model. The second sub-model performs a binary classification using the VGG-19 architecture. The model's performance was computed as the average of five-fold cross-validation processes. Loss, accuracy, Dice coefficient (CI. 95%), AU-ROC, sensitivity, and specificity (CI. 95%) were reported.
Six hundred and six shoulders MRIs were analyzed. The Goutallier distribution was presented as follows: 0 (66.50%); 1 (18.81%); 2 (8.42%); 3 (3.96%); 4 (2.31%). Segmentation results demonstrate high levels of accuracy (0.9977 ± 0.0002) and Dice score (0.9441 ± 0.0031), while the classification model also results in high levels of accuracy (0.9731 ± 0.0230); sensitivity (0.9000 ± 0.0980); specificity (0.9788 ± 0.0257); and AUROC (0.9903 ± 0.0092).
The two-step training method proposed using a deep learning model demonstrated strong performance in segmentation and classification tasks.
冈上肌的古塔利耶脂肪浸润是退行性肩部疾病中的一种关键情况。深度学习研究主要使用手动分割和标记来检测这种情况。采用具有分割和分类混合框架的无监督训练可以提供一种有效的解决方案。
开发并评估一种两步深度学习模型,用于检测感兴趣区域并根据古塔利耶分级对磁共振成像(MRI)冈上肌脂肪浸润进行分类。
进行了一项回顾性研究,时间从2019年1月1日至2020年9月20日,使用900张有冈上肌脂肪浸润诊断的MRI T2加权图像。实施并训练了一个具有两个顺序神经网络的模型。第一个子模型使用U-Net模型自动检测感兴趣区域。第二个子模型使用VGG-19架构进行二元分类。模型的性能通过五折交叉验证过程的平均值来计算。报告了损失、准确率、骰子系数(CI. 95%)、AU-ROC、敏感性和特异性(CI. 95%)。
分析了606例肩部MRI。古塔利耶分级分布如下:0级(66.50%);1级(18.81%);2级(8.42%);3级(3.96%);4级(2.31%)。分割结果显示出高水平的准确率(0.9977±0.0002)和骰子分数(0.9441±0.0031),而分类模型也具有高水平的准确率(0.9731±0.0230);敏感性(0.9000±0.0980);特异性(0.9788±0.0257);以及AUROC(0.9903±0.0092)。
所提出的使用深度学习模型的两步训练方法在分割和分类任务中表现出强大的性能。