Suppr超能文献

基于高效超参数调整的混合 CNN-LSTM 模型用于帕金森病预测。

Hybrid CNN-LSTM model with efficient hyperparameter tuning for prediction of Parkinson's disease.

机构信息

Department of Computer Science and Engineering, Chandigarh University, Chandigarh, Punjab, India.

Amity School of Engineering and Technology, Amity University Haryana, Gurugram, India.

出版信息

Sci Rep. 2023 Sep 5;13(1):14605. doi: 10.1038/s41598-023-41314-y.

Abstract

The patients' vocal Parkinson's disease (PD) changes could be identified early on, allowing for management before physically incapacitating symptoms appear. In this work, static as well as dynamic speech characteristics that are relevant to PD identification are examined. Speech changes or communication issues are among the challenges that Parkinson's individuals may encounter. As a result, avoiding the potential consequences of speech difficulties brought on by the condition depends on getting the appropriate diagnosis early. PD patients' speech signals change significantly from those of healthy individuals. This research presents a hybrid model utilizing improved speech signals with dynamic feature breakdown using CNN and LSTM. The proposed hybrid model employs a new, pre-trained CNN with LSTM to recognize PD in linguistic features utilizing Mel-spectrograms derived from normalized voice signal and dynamic mode decomposition. The proposed Hybrid model works in various phases, which include Noise removal, extraction of Mel-spectrograms, feature extraction using pre-trained CNN model ResNet-50, and the final stage is applied for classification. An experimental analysis was performed using the PC-GITA disease dataset. The proposed hybrid model is compared with traditional NN and well-known machine learning-based CART and SVM & XGBoost models. The accuracy level achieved in Neural Network, CART, SVM, and XGBoost models is 72.69%, 84.21%, 73.51%, and 90.81%. The results show that under these four machine approaches of tenfold cross-validation and dataset splitting without samples overlapping one individual, the proposed hybrid model achieves an accuracy of 93.51%, significantly outperforming traditional ML models utilizing static features in detecting Parkinson's disease.

摘要

患者的声带帕金森病(PD)变化可以早期识别,从而在出现身体致残症状之前进行管理。在这项工作中,检查了与 PD 识别相关的静态和动态语音特征。语音变化或沟通问题是帕金森患者可能遇到的挑战之一。因此,早期获得适当的诊断对于避免由该病症引起的语音困难的潜在后果至关重要。PD 患者的语音信号与健康个体的语音信号有很大的不同。本研究提出了一种混合模型,该模型利用改进的语音信号和使用 CNN 和 LSTM 进行动态特征分解。所提出的混合模型采用了一种新的、经过预训练的 CNN 与 LSTM,利用从归一化语音信号获得的梅尔频谱图和动态模式分解来识别语言特征中的 PD。该混合模型在不同阶段工作,包括噪声去除、梅尔频谱图提取、使用预训练的 CNN 模型 ResNet-50 进行特征提取,以及最终应用于分类。使用 PC-GITA 疾病数据集进行了实验分析。将所提出的混合模型与传统的神经网络以及基于机器学习的知名 CART 和 SVM & XGBoost 模型进行了比较。在神经网络、CART、SVM 和 XGBoost 模型中实现的精度水平分别为 72.69%、84.21%、73.51%和 90.81%。结果表明,在这四种机器方法的十折交叉验证和数据集拆分中,没有样本重叠一个个体,所提出的混合模型的准确率为 93.51%,在检测帕金森病方面明显优于利用静态特征的传统机器学习模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a40/10480168/21ecc47f9312/41598_2023_41314_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验