Department of Radiology, University of Ottawa Faculty of Medicine, 501 Smyth Road, Box 232, Ottawa, ON, K1H 8L6, Canada.
Department of Radiology, University of Cincinnati College of Medicine, 234 Goodman Street, Box 670761, Cincinnati, OH, 45267-0761, USA.
Skeletal Radiol. 2022 Sep;51(9):1765-1775. doi: 10.1007/s00256-022-04008-6. Epub 2022 Feb 22.
To evaluate if deep learning is a feasible approach for automated detection of supraspinatus tears on MRI.
A total of 200 shoulder MRI studies performed between 2015 and 2019 were retrospectively obtained from our institutional database using a balanced random sampling of studies containing a full-thickness tear, partial-thickness tear, or intact supraspinatus tendon. A 3-stage pipeline was developed comprised of a slice selection network based on a pre-trained residual neural network (ResNet); a segmentation network based on an encoder-decoder network (U-Net); and a custom multi-input convolutional neural network (CNN) classifier. Binary reference labels were created following review of radiologist reports and images by a radiology fellow and consensus validation by two musculoskeletal radiologists. Twenty percent of the data was reserved as a holdout test set with the remaining 80% used for training and optimization under a fivefold cross-validation strategy. Classification and segmentation accuracy were evaluated using area under the receiver operating characteristic curve (AUROC) and Dice similarity coefficient, respectively. Baseline characteristics in correctly versus incorrectly classified cases were compared using independent sample t-test and chi-squared.
Test sensitivity and specificity of the classifier at the optimal Youden's index were 85.0% (95% CI: 62.1-96.8%) and 85.0% (95% CI: 62.1-96.8%), respectively. AUROC was 0.943 (95% CI: 0.820-0.991). Dice segmentation accuracy was 0.814 (95% CI: 0.805-0.826). There was no significant difference in AUROC between 1.5 T and 3.0 T studies. Sub-analysis showed superior sensitivity on full-thickness (100%) versus partial-thickness (72.5%) subgroups.
Deep learning is a feasible approach to detect supraspinatus tears on MRI.
评估深度学习是否可用于自动检测 MRI 上的冈上肌腱撕裂。
从我院的数据库中,通过平衡随机抽样的方法,回顾性获取了 2015 年至 2019 年间的 200 项肩部 MRI 研究。该研究采用了一个三阶段的管道,包括基于预训练的残差神经网络(ResNet)的切片选择网络;基于编码器-解码器网络(U-Net)的分割网络;以及一个自定义的多输入卷积神经网络(CNN)分类器。根据放射科医生的报告和图像,创建了二元参考标签,然后由一名放射科住院医师进行审查,并由两名肌肉骨骼放射科医生进行共识验证。保留 20%的数据作为验证集,其余 80%的数据用于在五折交叉验证策略下进行训练和优化。使用接收器工作特征曲线下的面积(AUROC)和 Dice 相似系数分别评估分类和分割的准确性。使用独立样本 t 检验和卡方检验比较正确分类和错误分类病例的基线特征。
在最佳 Youden 指数下,分类器的测试灵敏度和特异性分别为 85.0%(95%CI:62.1-96.8%)和 85.0%(95%CI:62.1-96.8%)。AUROC 为 0.943(95%CI:0.820-0.991)。Dice 分割准确性为 0.814(95%CI:0.805-0.826)。1.5T 和 3.0T 研究之间的 AUROC 没有显著差异。亚组分析显示,全层撕裂(100%)比部分撕裂(72.5%)的敏感性更高。
深度学习是一种可行的方法,可以在 MRI 上检测冈上肌腱撕裂。