Shrivastava Anup, Saini Shivani, Kumari Dolly, Singh Sanjai, Adam Jost
Computational Materials and Photonics (CMP), Department of Electrical Engineering and Computer Science, University of Kassel, Kassel, Germany.
Computational Nano-Material Research Lab (CNMRL), Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
Beilstein J Nanotechnol. 2024 Sep 11;15:1153-1169. doi: 10.3762/bjnano.15.94. eCollection 2024.
Since the discovery of graphene in 2004, the unique properties of two-dimensional materials have sparked intense research interest regarding their use as alternative materials in various photonic applications. Transition metal dichalcogenide monolayers have been proposed as transport layers in photovoltaic cells, but the promising characteristics of group IV-VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer GeSe (a group IV-VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an astonishing device performance. We use ab initio modeling for the material prediction, while classical drift-diffusion drives the device simulations. Hybrid functionals calculate electronic and optical properties to maintain high accuracy. The structural stability has been verified using phonon spectra. The - dispersion reveals the investigated material's key electronic properties. The calculations reveal a direct bandgap of 1.12 eV for monolayer GeSe. We further extract critical optical parameters using the Kubo-Greenwood formalism and Kramers-Kronig relations. A significantly large absorption coefficient and a high dielectric constant inspired the design of a monolayer GeSe-based solar cell, exhibiting a high open circuit voltage of = 1.11 V, a fill factor of 87.66%, and more than 28% power conversion efficiency at room temperature. Our findings advocate monolayer GeSe for various optoelectronic devices, including next-generation solar cells. The hybrid quantum-to-macroscopic methodology presented here applies to broader classes of 2D and 3D materials and structures, showing a path to the computational design of future photovoltaic materials.
自2004年发现石墨烯以来,二维材料的独特性质引发了人们对其作为各种光子应用替代材料的浓厚研究兴趣。过渡金属二卤化物单层已被提议用作光伏电池的传输层,但IV-VI族二卤化物的潜在特性尚未得到充分研究。本论文报道了单层GeSe(一种IV-VI族二卤化物)、其光电行为及其在光伏领域的潜在应用。当用作空穴传输层时,该材料展现出惊人的器件性能。我们使用从头算模型进行材料预测,同时采用经典的漂移扩散模型进行器件模拟。混合泛函用于计算电子和光学性质以保持高精度。利用声子谱验证了结构稳定性。能带色散揭示了所研究材料的关键电子性质。计算结果表明单层GeSe的直接带隙为1.12 eV。我们进一步使用久保-格林伍德形式和克拉默斯-克朗尼格关系提取关键光学参数。较大的吸收系数和高介电常数促使设计出基于单层GeSe的太阳能电池,该电池在室温下具有1.11 V的高开路电压、87.66%的填充因子以及超过28%的功率转换效率。我们的研究结果支持将单层GeSe用于各种光电器件,包括下一代太阳能电池。这里提出的混合量子到宏观的方法适用于更广泛的二维和三维材料及结构类别,为未来光伏材料的计算设计指明了方向。