Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States.
Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States.
ACS Appl Bio Mater. 2024 Oct 21;7(10):7040-7050. doi: 10.1021/acsabm.4c01220. Epub 2024 Sep 18.
Three-dimensional (3D) bioprinting has emerged with potential for creating functional 3D tissues with customized geometries. However, the limited availability of bioinks capable of printing 3D structures with both high-shape fidelity and desired biological environments for encapsulated cells remains a key challenge. Here, we present a 3D bioprinting approach that uses universal fugitive network bioinks prepared by loading cells and hydrogel precursors (bioink base materials) into a 3D printable fugitive carrier. This approach constructs 3D structures of cell-encapsulated hydrogels by printing 3D structures using fugitive network bioinks, followed by cross-linking printed structures and removing the carrier from them. The use of the fugitive carrier decouples the 3D printability of bioinks from the material properties of bioink base materials, making this approach readily applicable to a range of hydrogel systems. The decoupling also enables the design of bioinks for the biological functionality of the final printed constructs without compromising the 3D printability. We demonstrate the generalizable 3D printability by printing self-supporting 3D structures of various hydrogels, including conventionally non-3D printable hydrogels and those with a low polymer content. We conduct preprinting screening of bioink base materials through 3D cell culture to select bioinks with high cell compatibility. The selected bioinks produce 3D constructs of cell-encapsulated hydrogels with both high-shape fidelity and high cell viability and proliferation. The universal fugitive network bioink platform could significantly expand 3D printable bioinks with customizable biological functionalities and the adoption of 3D bioprinting in diverse research and applied settings.
三维(3D)生物打印技术具有创造具有定制几何形状的功能性 3D 组织的潜力。然而,能够打印具有高形状保真度和所需生物环境的 3D 结构的生物墨水的有限可用性仍然是一个关键挑战。在这里,我们提出了一种 3D 生物打印方法,该方法使用通过将细胞和水凝胶前体(生物墨水基础材料)加载到 3D 可打印的易失性载体中来制备的通用易失性网络生物墨水。该方法通过使用易失性网络生物墨水打印 3D 结构来构建细胞包封水凝胶的 3D 结构,然后交联打印结构并从其中去除载体。易失性载体的使用将生物墨水的 3D 可打印性与生物墨水基础材料的材料性质解耦,使得该方法易于应用于各种水凝胶系统。这种解耦还可以设计用于最终打印结构的生物学功能的生物墨水,而不会影响 3D 可打印性。我们通过打印各种水凝胶的自支撑 3D 结构证明了该方法的普遍适用性,包括传统上不可 3D 打印的水凝胶和低聚合物含量的水凝胶。我们通过 3D 细胞培养进行预打印筛选,以选择具有高细胞相容性的生物墨水基础材料。所选的生物墨水基础材料可产生具有高形状保真度和高细胞活力和增殖的细胞包封水凝胶的 3D 结构。通用的易失性网络生物墨水平台可以显著扩展具有可定制生物功能的 3D 可打印生物墨水,并在各种研究和应用环境中采用 3D 生物打印技术。