Suppr超能文献

阿尔茨海默病患者的语言异常表明其信息传递能力降低。

Language abnormalities in Alzheimer's disease indicate reduced informativeness.

机构信息

Azad University Science and Research Branch, Sattari Highway, Tehran, Iran.

Abrar Institute of Higher Education, Khorasan Square, Tehran, Iran.

出版信息

Ann Clin Transl Neurol. 2024 Nov;11(11):2946-2957. doi: 10.1002/acn3.52205. Epub 2024 Sep 18.

Abstract

OBJECTIVE

This study aims to elucidate the cognitive underpinnings of language abnormalities in Alzheimer's Disease (AD) using a computational cross-linguistic approach and ultimately enhance the understanding and diagnostic accuracy of the disease.

METHODS

Computational analyses were conducted on language samples of 156 English and 50 Persian speakers, comprising both AD patients and healthy controls, to extract language indicators of AD. Furthermore, we introduced a machine learning-based metric, Language Informativeness Index (LII), to quantify empty speech.

RESULTS

Despite considerable disparities in surface structures between the two languages, we observed consistency across language indicators of AD in both English and Persian. Notably, indicators of AD in English resulted in a classification accuracy of 90% in classifying AD in Persian. The substantial degree of transferability suggests that the language abnormalities of AD do not tightly link to the surface structures specific to English. Subsequently, we posited that these abnormalities stem from impairments in a more universal aspect of language production: the ability to generate informative messages independent of the language spoken. Consistent with this hypothesis, we found significant correlations between language indicators of AD and empty speech in both English and Persian.

INTERPRETATION

The findings of this study suggest that language impairments in AD arise from a deficit in a universal aspect of message formation rather than from the breakdown of language-specific morphosyntactic structures. Beyond enhancing our understanding of the psycholinguistic deficits of AD, our approach fosters the development of diagnostic tools across various languages, enhancing health equity and biocultural diversity.

摘要

目的

本研究旨在利用计算跨语言方法阐明阿尔茨海默病(AD)语言异常的认知基础,从而提高对该疾病的理解和诊断准确性。

方法

对 156 名英语和 50 名波斯语患者和健康对照者的语言样本进行计算分析,以提取 AD 的语言指标。此外,我们引入了一种基于机器学习的指标语言信息指数(LII)来量化空话。

结果

尽管两种语言的表面结构存在相当大的差异,但我们在英语和波斯语中都观察到 AD 的语言指标具有一致性。值得注意的是,英语中 AD 的指标在分类波斯语 AD 时达到了 90%的准确率。这种高度的可转移性表明 AD 的语言异常与英语特有的表面结构没有紧密联系。随后,我们假设这些异常源自语言产生更普遍方面的损害:生成独立于所讲语言的信息性消息的能力。与这一假设一致,我们发现英语和波斯语中 AD 的语言指标与空话之间存在显著相关性。

解释

本研究的结果表明,AD 中的语言障碍是由信息形成的普遍方面的缺陷引起的,而不是由语言特定的形态句法结构的破坏引起的。除了提高我们对 AD 的心理语言学缺陷的理解外,我们的方法还促进了各种语言的诊断工具的发展,从而提高了健康公平性和生物文化多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a37/11572728/51a69cde64a0/ACN3-11-2946-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验