Suppr超能文献

语言标记可预测阿尔茨海默病的发病。

Linguistic markers predict onset of Alzheimer's disease.

作者信息

Eyigoz Elif, Mathur Sachin, Santamaria Mar, Cecchi Guillermo, Naylor Melissa

机构信息

IBM Thomas J. Watson Research Center, IBM Research, Yorktown Heights, NY 10598, United States.

Pfizer Worldwide Research and Development, Cambridge, MA 02139, United States.

出版信息

EClinicalMedicine. 2020 Oct 22;28:100583. doi: 10.1016/j.eclinm.2020.100583. eCollection 2020 Nov.

Abstract

BACKGROUND

The aim of this study is to use classification methods to predict future onset of Alzheimer's disease in cognitively normal subjects through automated linguistic analysis.

METHODS

To study linguistic performance as an early biomarker of AD, we performed predictive modeling of future diagnosis of AD from a cognitively normal baseline of Framingham Heart Study participants. The linguistic variables were derived from written responses to the cookie-theft picture-description task. We compared the predictive performance of linguistic variables with clinical and neuropsychological variables. The study included 703 samples from 270 participants out of which a dataset consisting of a single sample from 80 participants was held out for testing. Half of the participants in the test set developed AD symptoms before 85 years old, while the other half did not. All samples in the test set were collected during the cognitively normal period (before MCI). The mean time to diagnosis of mild AD was 7.59 years.

FINDINGS

Significant predictive power was obtained, with AUC of 0.74 and accuracy of 0.70 when using linguistic variables. The linguistic variables most relevant for predicting onset of AD have been identified in the literature as associated with cognitive decline in dementia.

INTERPRETATION

The results suggest that language performance in naturalistic probes expose subtle early signs of progression to AD in advance of clinical diagnosis of impairment.

FUNDING

Pfizer, Inc. provided funding to obtain data from the Framingham Heart Study Consortium, and to support the involvement of IBM Research in the initial phase of the study. The data used in this study was supported by Framingham Heart Study's National Heart, Lung, and Blood Institute contract (N01-HC-25195), and by grants from the National Institute on Aging grants (R01-AG016495, R01-AG008122) and the National Institute of Neurological Disorders and Stroke (R01-NS017950).

摘要

背景

本研究旨在通过自动语言分析,运用分类方法预测认知正常受试者未来患阿尔茨海默病的情况。

方法

为了研究语言表现作为阿尔茨海默病的早期生物标志物,我们对弗雷明汉心脏研究参与者从认知正常基线开始进行阿尔茨海默病未来诊断的预测建模。语言变量来自对曲奇盗窃图片描述任务的书面回答。我们将语言变量的预测性能与临床和神经心理学变量进行了比较。该研究包括来自270名参与者的703个样本,其中由80名参与者的单个样本组成的数据集被保留用于测试。测试集中一半的参与者在85岁之前出现了阿尔茨海默病症状,而另一半则没有。测试集中的所有样本均在认知正常期间(轻度认知障碍之前)收集。轻度阿尔茨海默病的平均诊断时间为7.59年。

研究结果

使用语言变量时获得了显著的预测能力,曲线下面积为0.74,准确率为0.70。文献中已确定与预测阿尔茨海默病发病最相关的语言变量与痴呆症的认知衰退有关。

解读

结果表明,在临床诊断出现损伤之前,自然情境下的语言表现就能提前揭示向阿尔茨海默病进展的细微早期迹象。

资金来源

辉瑞公司提供资金,用于从弗雷明汉心脏研究联盟获取数据,并支持IBM研究在研究初始阶段的参与。本研究中使用的数据得到了弗雷明汉心脏研究的国家心肺血液研究所合同(N01-HC-25195)以及国立衰老研究所(R01-AG016495、R01-AG008122)和国立神经疾病与中风研究所(R01-NS017950)的资助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90df/7700896/a70c6f0a7e73/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验