Fan Xu, Ding Xiangping, Wang Peng, Li Zhicheng, Cheng Yu, Liu Jinjun, Yu Jinhong, Zhai Jiwei, Pan Zhongbin, Li Weiping
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China.
Small. 2024 Dec;20(49):e2405786. doi: 10.1002/smll.202405786. Epub 2024 Sep 18.
Multilayer-structured nanocomposites are recognized as a prominent strategy for overcoming the paradox between the breakdown strength (E) and polarization (P) to achieve superior energy storage performance. However, current multilayer-structured nanocomposites involving substantial quantities of nanofillers (>10 vol.%) for high dielectric constant as polarization layer will inevitably deteriorate mechanical properties and breakdown strength. Herein, an innovative approach is reported to breaking conventional rules by designing a multilayered polymer composite with ultralow loading of AlO nanoparticles, i.e., 0.3 vol.% for polarization layers and 2 vol.% for insulation layers. By modulating the spatial distribution of AlO nanoparticles in polymer, a significantly increased interfacial dipole response is induced, and deep interfacial traps are constructed to capture the mobile charges, thereby suppressing high-temperature conduction loss. The resulting multilayered polymer composite exhibits an unparalleled discharged energy density of 7.8 J cm with a charging/discharging efficiency exceeding 90% at 150 °C. This work provides valuable insights into achieving superior capacitive performance in multilayer composite films operating under extreme conditions.
多层结构纳米复合材料被认为是克服击穿强度(E)和极化(P)之间矛盾以实现卓越储能性能的一种突出策略。然而,当前用于作为极化层以获得高介电常数的多层结构纳米复合材料包含大量纳米填料(>10体积%),这将不可避免地降低机械性能和击穿强度。在此,报道了一种创新方法,即通过设计一种具有超低AlO纳米颗粒负载量的多层聚合物复合材料来打破传统规则,即极化层为0.3体积%,绝缘层为2体积%。通过调节AlO纳米颗粒在聚合物中的空间分布,诱导出显著增强的界面偶极响应,并构建深界面陷阱来捕获移动电荷,从而抑制高温传导损耗。所得多层聚合物复合材料在150°C时展现出无与伦比的7.8 J/cm³的放电能量密度,充放电效率超过90%。这项工作为在极端条件下运行的多层复合薄膜中实现卓越电容性能提供了有价值的见解。