文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SeqSeg:用于自动血管模型构建的局部片段学习

SeqSeg: Learning Local Segments for Automatic Vascular Model Construction.

作者信息

Sveinsson Cepero Numi, Shadden Shawn C

机构信息

Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.

出版信息

Ann Biomed Eng. 2025 Jan;53(1):158-179. doi: 10.1007/s10439-024-03611-z. Epub 2024 Sep 18.


DOI:10.1007/s10439-024-03611-z
PMID:39292327
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11782360/
Abstract

Computational modeling of cardiovascular function has become a critical part of diagnosing, treating and understanding cardiovascular disease. Most strategies involve constructing anatomically accurate computer models of cardiovascular structures, which is a multistep, time-consuming process. To improve the model generation process, we herein present SeqSeg (sequential segmentation): a novel deep learning-based automatic tracing and segmentation algorithm for constructing image-based vascular models. SeqSeg leverages local U-Net-based inference to sequentially segment vascular structures from medical image volumes. We tested SeqSeg on CT and MR images of aortic and aortofemoral models and compared the predictions to those of benchmark 2D and 3D global nnU-Net models, which have previously shown excellent accuracy for medical image segmentation. We demonstrate that SeqSeg is able to segment more complete vasculature and is able to generalize to vascular structures not annotated in the training data.

摘要

心血管功能的计算建模已成为诊断、治疗和理解心血管疾病的关键部分。大多数策略都涉及构建心血管结构的解剖学精确计算机模型,这是一个多步骤、耗时的过程。为了改进模型生成过程,我们在此提出SeqSeg(顺序分割):一种基于深度学习的新型自动追踪和分割算法,用于构建基于图像的血管模型。SeqSeg利用基于局部U-Net的推理从医学图像体积中顺序分割血管结构。我们在主动脉和主动脉股动脉模型的CT和MR图像上测试了SeqSeg,并将预测结果与基准2D和3D全局nnU-Net模型的预测结果进行了比较,这些模型此前在医学图像分割方面表现出了出色的准确性。我们证明SeqSeg能够分割更完整的脉管系统,并且能够推广到训练数据中未标注的血管结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/4bbaf9ae4410/10439_2024_3611_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/c7b040a6614d/10439_2024_3611_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/8c47cc928d6c/10439_2024_3611_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/0aeccb10793e/10439_2024_3611_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/b4bde392232c/10439_2024_3611_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/7d4532f068a0/10439_2024_3611_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/8740abe719da/10439_2024_3611_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/6145dfb405c1/10439_2024_3611_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/706dfce80b32/10439_2024_3611_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/a87b5e44a939/10439_2024_3611_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/f14cbe6734e7/10439_2024_3611_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/23093789a52e/10439_2024_3611_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/05b5ed01f06f/10439_2024_3611_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/4bbaf9ae4410/10439_2024_3611_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/c7b040a6614d/10439_2024_3611_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/8c47cc928d6c/10439_2024_3611_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/0aeccb10793e/10439_2024_3611_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/b4bde392232c/10439_2024_3611_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/7d4532f068a0/10439_2024_3611_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/8740abe719da/10439_2024_3611_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/6145dfb405c1/10439_2024_3611_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/706dfce80b32/10439_2024_3611_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/a87b5e44a939/10439_2024_3611_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/f14cbe6734e7/10439_2024_3611_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/23093789a52e/10439_2024_3611_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/05b5ed01f06f/10439_2024_3611_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0f/11782360/4bbaf9ae4410/10439_2024_3611_Fig12_HTML.jpg

相似文献

[1]
SeqSeg: Learning Local Segments for Automatic Vascular Model Construction.

Ann Biomed Eng. 2025-1

[2]
SeqSeg: Learning Local Segments for Automatic Vascular Model Construction.

ArXiv. 2025-1-27

[3]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[4]
Cross-modality deep learning: Contouring of MRI data from annotated CT data only.

Med Phys. 2021-4

[5]
Segmentation of human aorta using 3D nnU-net-oriented deep learning.

Rev Sci Instrum. 2022-11-1

[6]
Deep learning-based medical image segmentation of the aorta using XR-MSF-U-Net.

Comput Methods Programs Biomed. 2022-10

[7]
Deep learning-based multimodal segmentation of oropharyngeal squamous cell carcinoma on CT and MRI using self-configuring nnU-Net.

Eur Radiol. 2024-8

[8]
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.

Med Phys. 2018-12-17

[9]
Automatic Segmentation of Type A Aortic Dissection on Computed Tomography Images Using Deep Learning Approach.

Diagnostics (Basel). 2024-6-23

[10]
MADR-Net: multi-level attention dilated residual neural network for segmentation of medical images.

Sci Rep. 2024-6-3

引用本文的文献

[1]
AI-powered automated model construction for patient-specific CFD simulations of aortic flows.

Sci Adv. 2025-9-5

[2]
The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach.

J Imaging. 2025-6-26

[3]
Computational fluid dynamics modelling of hemodynamics in aortic aneurysm and dissection: a review.

Front Bioeng Biotechnol. 2025-3-21

本文引用的文献

[1]
Evaluation metrics and statistical tests for machine learning.

Sci Rep. 2024-3-13

[2]
: Multicenter aortic vessel tree CTA dataset collection with ground truth segmentation masks.

Data Brief. 2022-1-6

[3]
VBNet: An end-to-end 3D neural network for vessel bifurcation point detection in mesoscopic brain images.

Comput Methods Programs Biomed. 2022-2

[4]
A deep-learning approach for direct whole-heart mesh reconstruction.

Med Image Anal. 2021-12

[5]
CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation.

PLoS Comput Biol. 2021-5

[6]
Learning-based algorithms for vessel tracking: A review.

Comput Med Imaging Graph. 2021-4

[7]
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.

Nat Methods. 2021-2

[8]
Neural Network Vessel Lumen Regression for Automated Lumen Cross-Section Segmentation in Cardiovascular Image-Based Modeling.

Cardiovasc Eng Technol. 2020-12

[9]
Automating Model Generation for Image-Based Cardiac Flow Simulation.

J Biomech Eng. 2020-11-1

[10]
A Distributed Lumped Parameter Model of Blood Flow.

Ann Biomed Eng. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索