Suppr超能文献

GSAMDA:一种基于图注意网络和稀疏自动编码器的预测潜在微生物-药物关联的计算模型。

GSAMDA: a computational model for predicting potential microbe-drug associations based on graph attention network and sparse autoencoder.

机构信息

Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, China.

Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, 410022, China.

出版信息

BMC Bioinformatics. 2022 Nov 18;23(1):492. doi: 10.1186/s12859-022-05053-7.

Abstract

BACKGROUND

Clinical studies show that microorganisms are closely related to human health, and the discovery of potential associations between microbes and drugs will facilitate drug research and development. However, at present, few computational methods for predicting microbe-drug associations have been proposed.

RESULTS

In this work, we proposed a novel computational model named GSAMDA based on the graph attention network and sparse autoencoder to infer latent microbe-drug associations. In GSAMDA, we first built a heterogeneous network through integrating known microbe-drug associations, microbe similarities and drug similarities. And then, we adopted a GAT-based autoencoder and a sparse autoencoder module respectively to learn topological representations and attribute representations for nodes in the newly constructed heterogeneous network. Finally, based on these two kinds of node representations, we constructed two kinds of feature matrices for microbes and drugs separately, and then, utilized them to calculate possible association scores for microbe-drug pairs.

CONCLUSION

A novel computational model is proposed for predicting potential microbe-drug associations based on graph attention network and sparse autoencoder. Compared with other five state-of-the-art competitive methods, the experimental results illustrated that our model can achieve better performance. Moreover, case studies on two categories of representative drugs and microbes further demonstrated the effectiveness of our model as well.

摘要

背景

临床研究表明微生物与人类健康密切相关,发现微生物与药物之间的潜在关联将有助于药物的研发。然而,目前很少有计算方法用于预测微生物-药物关联。

结果

在这项工作中,我们提出了一种名为 GSAMDA 的新的计算模型,该模型基于图注意力网络和稀疏自动编码器来推断潜在的微生物-药物关联。在 GSAMDA 中,我们首先通过整合已知的微生物-药物关联、微生物相似性和药物相似性构建了一个异构网络。然后,我们分别采用基于 GAT 的自动编码器和稀疏自动编码器模块来学习新构建的异构网络中节点的拓扑表示和属性表示。最后,基于这两种节点表示,我们分别为微生物和药物构建了两种特征矩阵,然后利用它们计算微生物-药物对的可能关联分数。

结论

提出了一种基于图注意力网络和稀疏自动编码器的预测潜在微生物-药物关联的新计算模型。与其他五种最先进的竞争方法相比,实验结果表明,我们的模型可以取得更好的性能。此外,对两类有代表性的药物和微生物的案例研究也进一步证明了我们模型的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e2/9675274/a6a6a3420b20/12859_2022_5053_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验