Suppr超能文献

人工智能影像组学工具在肺结节风险分层中的临床应用。

Clinical utility of an artificial intelligence radiomics-based tool for risk stratification of pulmonary nodules.

机构信息

Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

NYU Langone Health, New York City, NY, USA.

出版信息

JNCI Cancer Spectr. 2024 Sep 2;8(5). doi: 10.1093/jncics/pkae086.

Abstract

BACKGROUND

Clinical utility data on pulmonary nodule (PN) risk stratification biomarkers are lacking. We aimed to determine the incremental predictive value and clinical utility of using an artificial intelligence (AI) radiomics-based computer-aided diagnosis (CAD) tool in addition to routine clinical information to risk stratify PNs among real-world patients.

METHODS

We performed a retrospective cohort study of patients with PNs who underwent lung biopsy. We collected clinical data and used a commercially available AI radiomics-based CAD tool to calculate a Lung Cancer Prediction (LCP) score. We developed logistic regression models to evaluate a well-validated clinical risk prediction model (the Mayo Clinic model) with and without the LCP score (Mayo vs Mayo + LCP) using area under the curve (AUC), risk stratification table, and standardized net benefit analyses.

RESULTS

Among the 134 patients undergoing PN biopsy, cancer prevalence was 61%. Addition of the radiomics-based LCP score to the Mayo model was associated with increased predictive accuracy (likelihood ratio test, P = .012). The AUCs for the Mayo and Mayo + LCP models were 0.58 (95% CI = 0.48 to 0.69) and 0.65 (95% CI = 0.56 to 0.75), respectively. At the 65% risk threshold, the Mayo + LCP model was associated with increased sensitivity (56% vs 38%; P = .019), similar false positive rate (33% vs 35%; P = .8), and increased standardized net benefit (18% vs -3.3%) compared with the Mayo model.

CONCLUSIONS

Use of a commercially available AI radiomics-based CAD tool as a supplement to clinical information improved PN cancer risk prediction and may result in clinically meaningful changes in risk stratification.

摘要

背景

目前缺乏肺结节(PN)风险分层生物标志物的临床实用性数据。我们旨在确定在真实患者中,除了常规临床信息外,使用人工智能(AI)基于放射组学的计算机辅助诊断(CAD)工具来分层 PN 的额外预测价值和临床实用性。

方法

我们对接受肺活检的 PN 患者进行了回顾性队列研究。我们收集了临床数据,并使用商业上可用的 AI 基于放射组学的 CAD 工具计算了肺癌预测(LCP)评分。我们开发了逻辑回归模型,使用曲线下面积(AUC)、风险分层表和标准化净收益分析,评估了具有和不具有 LCP 评分的 Mayo 临床风险预测模型( Mayo 模型)( Mayo vs Mayo + LCP)。

结果

在接受 PN 活检的 134 例患者中,癌症患病率为 61%。在 Mayo 模型中加入基于放射组学的 LCP 评分与预测准确性的提高相关(似然比检验,P=0.012)。Mayo 和 Mayo + LCP 模型的 AUC 分别为 0.58(95%CI=0.48 至 0.69)和 0.65(95%CI=0.56 至 0.75)。在 65%的风险阈值下,与 Mayo 模型相比, Mayo + LCP 模型具有更高的敏感性(56%比 38%;P=0.019)、相似的假阳性率(33%比 35%;P=0.8)和更高的标准化净收益(18%比-3.3%)。

结论

使用商业上可用的 AI 基于放射组学的 CAD 工具作为临床信息的补充,可以提高 PN 癌症风险预测,并可能导致风险分层的临床意义上的改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a615/11521375/993faf6dd84d/pkae086f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验