Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
NYU Langone Health, New York City, NY, USA.
JNCI Cancer Spectr. 2024 Sep 2;8(5). doi: 10.1093/jncics/pkae086.
Clinical utility data on pulmonary nodule (PN) risk stratification biomarkers are lacking. We aimed to determine the incremental predictive value and clinical utility of using an artificial intelligence (AI) radiomics-based computer-aided diagnosis (CAD) tool in addition to routine clinical information to risk stratify PNs among real-world patients.
We performed a retrospective cohort study of patients with PNs who underwent lung biopsy. We collected clinical data and used a commercially available AI radiomics-based CAD tool to calculate a Lung Cancer Prediction (LCP) score. We developed logistic regression models to evaluate a well-validated clinical risk prediction model (the Mayo Clinic model) with and without the LCP score (Mayo vs Mayo + LCP) using area under the curve (AUC), risk stratification table, and standardized net benefit analyses.
Among the 134 patients undergoing PN biopsy, cancer prevalence was 61%. Addition of the radiomics-based LCP score to the Mayo model was associated with increased predictive accuracy (likelihood ratio test, P = .012). The AUCs for the Mayo and Mayo + LCP models were 0.58 (95% CI = 0.48 to 0.69) and 0.65 (95% CI = 0.56 to 0.75), respectively. At the 65% risk threshold, the Mayo + LCP model was associated with increased sensitivity (56% vs 38%; P = .019), similar false positive rate (33% vs 35%; P = .8), and increased standardized net benefit (18% vs -3.3%) compared with the Mayo model.
Use of a commercially available AI radiomics-based CAD tool as a supplement to clinical information improved PN cancer risk prediction and may result in clinically meaningful changes in risk stratification.
目前缺乏肺结节(PN)风险分层生物标志物的临床实用性数据。我们旨在确定在真实患者中,除了常规临床信息外,使用人工智能(AI)基于放射组学的计算机辅助诊断(CAD)工具来分层 PN 的额外预测价值和临床实用性。
我们对接受肺活检的 PN 患者进行了回顾性队列研究。我们收集了临床数据,并使用商业上可用的 AI 基于放射组学的 CAD 工具计算了肺癌预测(LCP)评分。我们开发了逻辑回归模型,使用曲线下面积(AUC)、风险分层表和标准化净收益分析,评估了具有和不具有 LCP 评分的 Mayo 临床风险预测模型( Mayo 模型)( Mayo vs Mayo + LCP)。
在接受 PN 活检的 134 例患者中,癌症患病率为 61%。在 Mayo 模型中加入基于放射组学的 LCP 评分与预测准确性的提高相关(似然比检验,P=0.012)。Mayo 和 Mayo + LCP 模型的 AUC 分别为 0.58(95%CI=0.48 至 0.69)和 0.65(95%CI=0.56 至 0.75)。在 65%的风险阈值下,与 Mayo 模型相比, Mayo + LCP 模型具有更高的敏感性(56%比 38%;P=0.019)、相似的假阳性率(33%比 35%;P=0.8)和更高的标准化净收益(18%比-3.3%)。
使用商业上可用的 AI 基于放射组学的 CAD 工具作为临床信息的补充,可以提高 PN 癌症风险预测,并可能导致风险分层的临床意义上的改变。