文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于神经影像学生物标志物的阿尔茨海默病早期预测的人工智能——一个不断发展领域的综述。

AI for the prediction of early stages of Alzheimer's disease from neuroimaging biomarkers - A narrative review of a growing field.

机构信息

Department of Health and Human Physiology, University of Iowa, Iowa City, IA, 52242, USA.

Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.

出版信息

Neurol Sci. 2024 Nov;45(11):5117-5127. doi: 10.1007/s10072-024-07649-8. Epub 2024 Jun 13.


DOI:10.1007/s10072-024-07649-8
PMID:38866971
Abstract

OBJECTIVES: The objectives of this narrative review are to summarize the current state of AI applications in neuroimaging for early Alzheimer's disease (AD) prediction and to highlight the potential of AI techniques in improving early AD diagnosis, prognosis, and management. METHODS: We conducted a narrative review of studies using AI techniques applied to neuroimaging data for early AD prediction. We examined single-modality studies using structural MRI and PET imaging, as well as multi-modality studies integrating multiple neuroimaging techniques and biomarkers. Furthermore, they reviewed longitudinal studies that model AD progression and identify individuals at risk of rapid decline. RESULTS: Single-modality studies using structural MRI and PET imaging have demonstrated high accuracy in classifying AD and predicting progression from mild cognitive impairment (MCI) to AD. Multi-modality studies, integrating multiple neuroimaging techniques and biomarkers, have shown improved performance and robustness compared to single-modality approaches. Longitudinal studies have highlighted the value of AI in modeling AD progression and identifying individuals at risk of rapid decline. However, challenges remain in data standardization, model interpretability, generalizability, clinical integration, and ethical considerations. CONCLUSION: AI techniques applied to neuroimaging data have the potential to improve early AD diagnosis, prognosis, and management. Addressing challenges related to data standardization, model interpretability, generalizability, clinical integration, and ethical considerations is crucial for realizing the full potential of AI in AD research and clinical practice. Collaborative efforts among researchers, clinicians, and regulatory agencies are needed to develop reliable, robust, and ethical AI tools that can benefit AD patients and society.

摘要

目的:本叙述性综述的目的是总结人工智能(AI)在神经影像学中用于早期阿尔茨海默病(AD)预测的应用现状,并强调 AI 技术在改善早期 AD 诊断、预后和管理方面的潜力。

方法:我们对使用 AI 技术应用于神经影像学数据进行早期 AD 预测的研究进行了叙述性综述。我们检查了使用结构 MRI 和 PET 成像的单模态研究,以及整合多种神经影像学技术和生物标志物的多模态研究。此外,我们还回顾了对 AD 进展进行建模并识别有快速衰退风险的个体的纵向研究。

结果:使用结构 MRI 和 PET 成像的单模态研究已经证明了在分类 AD 和预测从轻度认知障碍(MCI)到 AD 的进展方面具有很高的准确性。整合多种神经影像学技术和生物标志物的多模态研究与单模态方法相比,显示出了更好的性能和稳健性。纵向研究强调了 AI 在对 AD 进展进行建模和识别有快速衰退风险的个体方面的价值。然而,在数据标准化、模型可解释性、通用性、临床整合和伦理考虑方面仍然存在挑战。

结论:应用于神经影像学数据的 AI 技术有可能改善早期 AD 的诊断、预后和管理。解决与数据标准化、模型可解释性、通用性、临床整合和伦理考虑相关的挑战对于充分发挥 AI 在 AD 研究和临床实践中的潜力至关重要。研究人员、临床医生和监管机构需要共同努力,开发可靠、稳健和符合伦理的 AI 工具,以造福 AD 患者和社会。

相似文献

[1]
AI for the prediction of early stages of Alzheimer's disease from neuroimaging biomarkers - A narrative review of a growing field.

Neurol Sci. 2024-11

[2]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[3]
Latent diffusion model-based MRI superresolution enhances mild cognitive impairment prognostication and Alzheimer's disease classification.

Neuroimage. 2024-8-1

[4]
Predicting changes in brain metabolism and progression from mild cognitive impairment to dementia using multitask Deep Learning models and explainable AI.

Neuroimage. 2024-8-15

[5]
Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer's disease.

Mol Neurodegener. 2020-9-22

[6]
AI-driven innovations in Alzheimer's disease: Integrating early diagnosis, personalized treatment, and prognostic modelling.

Ageing Res Rev. 2024-11

[7]
Prediction of Progressive Mild Cognitive Impairment by Multi-Modal Neuroimaging Biomarkers.

J Alzheimers Dis. 2016

[8]
Neuroimaging and analytical methods for studying the pathways from mild cognitive impairment to Alzheimer's disease: protocol for a rapid systematic review.

Syst Rev. 2020-4-2

[9]
Explainable AI-based Deep-SHAP for mapping the multivariate relationships between regional neuroimaging biomarkers and cognition.

Eur J Radiol. 2024-5

[10]
Potential neuroimaging biomarkers of pathologic brain changes in Mild Cognitive Impairment and Alzheimer's disease: a systematic review.

BMC Geriatr. 2016-5-16

引用本文的文献

[1]
Deep ensemble learning with transformer models for enhanced Alzheimer's disease detection.

Sci Rep. 2025-7-9

[2]
Multivariate longitudinal clustering reveals neuropsychological factors as dementia predictors in an Alzheimer's disease progression study.

BioData Min. 2025-3-28

[3]
"Advances in biomarker discovery and diagnostics for alzheimer's disease".

Neurol Sci. 2025-6

[4]
Machine learning-based radiomics in neurodegenerative and cerebrovascular disease.

MedComm (2020). 2024-10-28

本文引用的文献

[1]
HMIC: Hierarchical Medical Image Classification, A Deep Learning Approach.

Information (Basel). 2020-6

[2]
Alzheimer's disease.

Lancet. 2021-4-24

[3]
Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review.

Med Image Anal. 2021-1

[4]
Early Detection of Alzheimer's Disease Using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning.

Front Neurosci. 2020-5-13

[5]
Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation.

Med Image Anal. 2020-7

[6]
Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data.

Front Aging Neurosci. 2019-8-20

[7]
FDG-PET as an independent biomarker for Alzheimer's biological diagnosis: a longitudinal study.

Alzheimers Res Ther. 2019-6-29

[8]
Resting State Abnormalities of the Default Mode Network in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis.

J Alzheimers Dis. 2019

[9]
Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study.

JAMA Neurol. 2019-8-1

[10]
A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer's disease dementia.

Brain. 2019-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索