Li Zichuang, Ma Ruguang, Ju Qiangjian, Liu Qian, Liu Lijia, Zhu Yufang, Yang Minghui, Wang Jiacheng
State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Innovation (Camb). 2022 Jun 9;3(4):100268. doi: 10.1016/j.xinn.2022.100268. eCollection 2022 Jul 12.
Single-site metal atoms (SMAs) on supports are attracting extensive interest as new catalytic systems because of maximized atom utilization and superior performance. However, rational design of configuration-optimized SMAs with high activity from the perspectives of fundamental electron spin is highly challenging. Herein, N-coordinated Fe single atoms are successfully distributed over axial carbon micropores to form dangling-FeN centers (d-FeN). This unique d-FeN demonstrates much higher intrinsic activity toward oxygen reduction reaction (ORR) in HClO than FeN without micropore underneath and commercial Pt/C. Both theoretical calculation and electronic structure characterization imply that d-FeN endows central Fe with medium spin (t e ), which provides a spin channel for electron transition compared with FeN with low spin. This leads to the facile formation of the singlet state of oxygen-containing species from triplet oxygen during the ORR, thus showing faster kinetics than FeN. This work provides an in-depth understanding of spin tuning on SMAs for advanced energy catalysis.
负载型单原子金属(SMA)作为新型催化体系正吸引着广泛关注,因为其原子利用率最大化且性能卓越。然而,从基本电子自旋的角度合理设计具有高活性的构型优化SMA极具挑战性。在此,氮配位的铁单原子成功分布在轴向碳微孔上,形成悬空的FeN中心(d-FeN)。这种独特的d-FeN在HClO中对氧还原反应(ORR)表现出比下方无微孔的FeN和商业Pt/C高得多的本征活性。理论计算和电子结构表征均表明,d-FeN赋予中心铁中等自旋(t e ),与低自旋的FeN相比,这为电子跃迁提供了一个自旋通道。这导致在ORR过程中,三线态氧更容易形成含氧化合物的单重态,从而显示出比FeN更快的动力学。这项工作为先进能量催化中SMA的自旋调控提供了深入理解。