Suppr超能文献

人类 20S 蛋白酶体生物发生的结构基础。

Structural basis of human 20S proteasome biogenesis.

机构信息

Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA.

出版信息

Nat Commun. 2024 Sep 18;15(1):8184. doi: 10.1038/s41467-024-52513-0.

Abstract

New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. Here, to understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observe an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to β-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the β-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the β pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.

摘要

新的蛋白酶体是为了适应细胞代谢需求的增加而产生的,以防止细胞毒性蛋白的积累。蛋白酶体 20S 核心复合物的形成依赖于五个伴侣蛋白 PAC1-4 和 POMP 的功能。在这里,为了了解这些伴侣蛋白如何促进蛋白酶体的组装,我们使用 CRISPR/Cas 基因编辑对内源性伴侣蛋白进行标记,并通过冷冻电镜观察伴侣蛋白结合的复合物。我们观察到一个早期的α环中间亚复合物,它被 PAC1-4 稳定,当 PAC3/PAC4 解离和 PAC1 N 端尾巴重排时,它会转变为β环组装。β环的完成和半蛋白酶体的二聚化将关键赖氨酸 K33 重新定位,触发β前肽的切割,从而导致 POMP 和 PAC1/PAC2 的协同解离,产生成熟的 20S 蛋白酶体。这项研究揭示了人类蛋白酶体组装途径中关键步骤的结构见解,并为 20S 生物发生提供了分子蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90ee/11410832/49fd107193b4/41467_2024_52513_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验