Suppr超能文献

在群体觅食行为中关联认知策略、神经机制和运动统计

Linking cognitive strategy, neural mechanism, and movement statistics in group foraging behaviors.

机构信息

Basis Research Institute, New York, 10026, USA.

Arizona State University, School for the Future of Innovation in Society, Tempe, 85287, USA.

出版信息

Sci Rep. 2024 Sep 18;14(1):21770. doi: 10.1038/s41598-024-71931-0.

Abstract

Foraging for food is a rich and ubiquitous animal behavior that involves complex cognitive decisions, and interactions between different individuals and species. There has been exciting recent progress in understanding multi-agent foraging behavior from cognitive, neuroscience, and statistical perspectives, but integrating these perspectives can be elusive. This paper seeks to unify these perspectives, allowing statistical analysis of observational animal movement data to shed light on the viability of cognitive models of foraging strategies. We start with cognitive agents with internal preferences expressed as value functions, and implement this in a biologically plausible neural network, and an equivalent statistical model, where statistical predictors of agents' movements correspond to the components of the value functions. We test this framework by simulating foraging agents and using Bayesian statistical modeling to correctly identify the factors that best predict the agents' behavior. As further validation, we use this framework to analyze an open-source locust foraging dataset. Finally, we collect new multi-agent real-world bird foraging data, and apply this method to analyze the preferences of different species. Together, this work provides an initial roadmap to integrate cognitive, neuroscience, and statistical approaches for reasoning about animal foraging in complex multi-agent environments.

摘要

觅食是一种丰富而普遍的动物行为,涉及复杂的认知决策,以及不同个体和物种之间的相互作用。从认知、神经科学和统计学的角度理解多主体觅食行为方面最近取得了令人兴奋的进展,但整合这些观点可能具有挑战性。本文旨在统一这些观点,使对动物运动观测数据的统计分析能够揭示觅食策略的认知模型的可行性。我们从具有内部偏好的认知主体开始,将其表示为价值函数,并在一个具有生物学意义的神经网络和一个等效的统计模型中实现,其中主体运动的统计预测与价值函数的组成部分相对应。我们通过模拟觅食主体并使用贝叶斯统计建模来正确识别最佳预测主体行为的因素来测试这个框架。作为进一步的验证,我们使用这个框架来分析一个开源蝗虫觅食数据集。最后,我们收集了新的多主体真实世界鸟类觅食数据,并应用该方法来分析不同物种的偏好。总之,这项工作为在复杂的多主体环境中思考动物觅食提供了一个整合认知、神经科学和统计学方法的初步路线图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验