Suppr超能文献

社会斑块觅食决策的随机动力学

Stochastic dynamics of social patch foraging decisions.

作者信息

Bidari Subekshya, El Hady Ahmed, Davidson Jacob D, Kilpatrick Zachary P

机构信息

Department of Applied Mathematics, University of Colorado Boulder, Colorado 80309, USA.

Princeton Neuroscience Institute, Princeton, New Jersey 08540, USA.

出版信息

Phys Rev Res. 2022 Aug-Oct;4(3). doi: 10.1103/physrevresearch.4.033128. Epub 2022 Aug 15.

Abstract

Animals typically forage in groups. Social foraging can help animals avoid predation and decrease their uncertainty about the richness of food resources. Despite this, theoretical mechanistic models of patch foraging have overwhelmingly focused on the behavior of single foragers. In this study, we develop a mechanistic model that accounts for the behavior of individuals foraging together and departing food patches following an evidence accumulation process. Each individual's belief about patch quality is represented by a stochastically accumulating variable, which is coupled to another's belief to represent the transfer of information. We consider a cohesive group, and model information sharing by considering both intermittent pulsatile coupling (only communicate decision to leave) and continuous diffusive coupling (communicate throughout the deliberation process). Groups employing pulsatile coupling can obtain higher foraging efficiency, which depends more strongly on the coupling parameter compared to those using diffusive coupling. Conversely, groups using diffusive coupling are more robust to changes and heterogeneities in belief weighting and departure criteria. Efficiency is measured by a reward rate function that balances the amount of energy accumulated against the time spent in a patch, computed by solving an ordered first passage time problem for the patch departures of each individual. Using synthetic departure time data, we can distinguish between the two modes of communication and identify the model parameters. Our model establishes a social patch foraging framework to identify deliberative decision strategies and forms of social communication, and to allow model fitting to field data from foraging animal groups.

摘要

动物通常成群觅食。群居觅食有助于动物避免被捕食,并减少它们对食物资源丰富程度的不确定性。尽管如此,斑块觅食的理论机制模型绝大多数都集中在单个觅食者的行为上。在本研究中,我们开发了一个机制模型,该模型考虑了一起觅食并在证据积累过程后离开食物斑块的个体行为。每个个体对斑块质量的信念由一个随机积累的变量表示,该变量与另一个个体的信念耦合以表示信息传递。我们考虑一个紧密结合的群体,并通过考虑间歇性脉冲耦合(仅传达离开的决定)和连续扩散耦合(在整个审议过程中进行交流)来模拟信息共享。采用脉冲耦合的群体可以获得更高的觅食效率,与使用扩散耦合的群体相比,其对耦合参数的依赖性更强。相反,使用扩散耦合的群体对信念权重和离开标准的变化及异质性更具鲁棒性。效率通过奖励率函数来衡量,该函数平衡了积累的能量量与在一个斑块中花费的时间,通过求解每个个体斑块离开的有序首次通过时间问题来计算。使用合成的离开时间数据,我们可以区分两种通信模式并识别模型参数。我们的模型建立了一个群居斑块觅食框架,以识别审议决策策略和社会通信形式,并允许对觅食动物群体的实地数据进行模型拟合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6687/9461581/80d309a8d010/nihms-1831017-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验