Suppr超能文献

基于凝聚能量转换器的微核电池。

Micronuclear battery based on a coalescent energy transducer.

机构信息

State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.

出版信息

Nature. 2024 Sep;633(8031):811-815. doi: 10.1038/s41586-024-07933-9. Epub 2024 Sep 18.

Abstract

Micronuclear batteries harness energy from the radioactive decay of radioisotopes to generate electricity on a small scale, typically in the nanowatt or microwatt range. Contrary to chemical batteries, the longevity of a micronuclear battery is tied to the half-life of the used radioisotope, enabling operational lifetimes that can span several decades. Furthermore, the radioactive decay remains unaffected by environmental factors such as temperature, pressure and magnetic fields, making the micronuclear battery an enduring and reliable power source in scenarios in which conventional batteries prove impractical or challenging to replace. Common radioisotopes of americium (Am and Am) are α-decay emitters with half-lives longer than hundreds of years. Severe self-adsorption in traditional architectures of micronuclear batteries impedes high-efficiency α-decay energy conversion, making the development of α-radioisotope micronuclear batteries challenging. Here we propose a micronuclear battery architecture that includes a coalescent energy transducer by incorporating Am into a luminescent lanthanide coordination polymer. This couples radioisotopes with energy transducers at the molecular level, resulting in an 8,000-fold enhancement in energy conversion efficiency from α decay energy to sustained autoluminescence compared with that of conventional architectures. When implemented in conjunction with a photovoltaic cell that translates autoluminescence into electricity, a new type of radiophotovoltaic micronuclear battery with a total power conversion efficiency of 0.889% and a power per activity of 139 microwatts per curie (μW Ci) is obtained.

摘要

微核电池利用放射性同位素衰变来产生电能,规模通常在纳瓦或微瓦范围内。与化学电池不同,微核电池的寿命与所使用的放射性同位素的半衰期有关,这使得其运行寿命可以跨越几十年。此外,放射性衰变不受环境因素(如温度、压力和磁场)的影响,这使得微核电池成为在传统电池不实用或难以更换的情况下的一种持久可靠的电源。镅(Am 和 Am)等常见的放射性同位素是α衰变发射体,半衰期超过数百年。在传统的微核电池结构中,严重的自吸附阻碍了高效的α衰变能量转换,这使得开发α放射性同位素微核电池具有挑战性。在这里,我们提出了一种微核电池结构,通过将 Am 掺入发光镧系配位聚合物中,包括一个凝聚能转换器。这将放射性同位素与能量转换器在分子水平上结合起来,与传统结构相比,从α衰变能量到持续自发光的能量转换效率提高了 8000 倍。当与将自发光转化为电能的光伏电池结合使用时,获得了一种新型的放射性光电微核电池,其总功率转换效率为 0.889%,每居里活性的功率为 139 微瓦每居里(μW Ci)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验