Suppr超能文献

在一项多中心研究中,快速蒸发质谱法用于组织学分类和分子诊断的检测。

Testing of rapid evaporative mass spectrometry for histological tissue classification and molecular diagnostics in a multi-site study.

机构信息

Department of Surgery, Queen's University, Kingston, ON, Canada.

Gastrointestinal Diseases Research Unit, Kingston Health Sciences Centre, Kingston, ON, Canada.

出版信息

Br J Cancer. 2024 Nov;131(8):1298-1308. doi: 10.1038/s41416-024-02739-y. Epub 2024 Sep 18.

Abstract

BACKGROUND

While REIMS technology has successfully been demonstrated for the histological identification of ex-vivo breast tumor tissues, questions regarding the robustness of the approach and the possibility of tumor molecular diagnostics still remain unanswered. In the current study, we set out to determine whether it is possible to acquire cross-comparable REIMS datasets at multiple sites for the identification of breast tumors and subtypes.

METHODS

A consortium of four sites with three of them having access to fresh surgical tissue samples performed tissue analysis using identical REIMS setups and protocols. Overall, 21 breast cancer specimens containing pathology-validated tumor and adipose tissues were analyzed and results were compared using uni- and multivariate statistics on normal, WT and PIK3CA mutant ductal carcinomas.

RESULTS

Statistical analysis of data from standards showed significant differences between sites and individual users. However, the multivariate classification models created from breast cancer data elicited 97.1% and 98.6% correct classification for leave-one-site-out and leave-one-patient-out cross validation. Molecular subtypes represented by PIK3CA mutation gave consistent results across sites.

CONCLUSIONS

The results clearly demonstrate the feasibility of creating and using global classification models for a REIMS-based margin assessment tool, supporting the clinical translatability of the approach.

摘要

背景

尽管 REIMS 技术已成功应用于离体乳腺癌组织的组织学鉴定,但该方法的稳健性以及肿瘤分子诊断的可能性仍未得到解答。在本研究中,我们旨在确定是否有可能在多个地点获取可交叉比较的 REIMS 数据集,以用于乳腺癌和亚型的鉴定。

方法

由四个具有三个可获取新鲜手术组织样本的站点组成的联盟,使用相同的 REIMS 设备和方案进行组织分析。总共分析了 21 例包含经病理验证的肿瘤和脂肪组织的乳腺癌标本,并使用单变量和多变量统计方法对正常、WT 和 PIK3CA 突变的导管癌进行了比较。

结果

对标准数据的统计分析显示,站点之间和各个用户之间存在显著差异。然而,从乳腺癌数据创建的多元分类模型在留一站点和留一患者交叉验证中得出了 97.1%和 98.6%的正确分类。代表 PIK3CA 突变的分子亚型在各个站点均得到了一致的结果。

结论

研究结果清楚地表明,创建和使用基于 REIMS 的边缘评估工具的全球分类模型是可行的,这支持了该方法的临床可转化性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b463/11473823/0b05de868f80/41416_2024_2739_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验