Suppr超能文献

DentAge:基于全景牙科 X 射线图像的自动年龄预测深度学习。

DentAge: Deep learning for automated age prediction using panoramic dental X-ray images.

机构信息

Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.

Zobozdravstvo Diamant, Celje, Slovenia.

出版信息

J Forensic Sci. 2024 Nov;69(6):2069-2074. doi: 10.1111/1556-4029.15629. Epub 2024 Sep 18.

Abstract

Age estimation plays a crucial role in various fields, including forensic science and anthropology. This study aims to develop and validate DentAge, a deep-learning model for automated age prediction using panoramic dental X-ray images. DentAge was trained on a dataset comprising 21,007 panoramic dental X-ray images sourced from a private dental center in Slovenia. The dataset included subjects aged 4 to 97 years with various dental conditions. Transfer learning was employed, initializing the model with ImageNet weights and fine-tuning on the dental image dataset. The model was trained using stochastic gradient descent with momentum, and mean absolute error (MAE) served as the objective function. Across the test dataset, DentAge achieved an MAE of 3.12 years, demonstrating its efficacy in age prediction. Notably, the model performed well across different age groups, with MAEs ranging from 1.94 (age group [10-20]) to 13.40 years (age group [90-100]). Visual evaluation revealed factors contributing to prediction errors, including prosthetic restorations, tooth loss, and bone resorption. DentAge represents a significant advancement in automated age prediction within dentistry. The model's robust performance across diverse age groups and dental conditions underscores its potential utility in real-world scenarios. Our model will be accessible to the public for further adjustments and validation, ensuring DentAge's effectiveness and trustworthiness in practical scenarios.

摘要

年龄估测在法医科学和人类学等各个领域都起着至关重要的作用。本研究旨在开发和验证 DentAge,这是一种基于深度学习的自动年龄预测模型,可使用全景牙科 X 射线图像进行预测。DentAge 是在一个包含 21,007 张来自斯洛文尼亚一家私人牙科中心的全景牙科 X 射线图像的数据集上进行训练的。该数据集包含年龄在 4 至 97 岁之间、具有各种牙齿状况的受试者。我们采用了迁移学习的方法,使用 ImageNet 权重初始化模型,并在牙科图像数据集上进行微调。该模型使用具有动量的随机梯度下降进行训练,以平均绝对误差(MAE)作为目标函数。在整个测试数据集上,DentAge 的 MAE 为 3.12 岁,证明了其在年龄预测方面的有效性。值得注意的是,该模型在不同年龄组中的表现都很好,MAE 范围从 1.94(年龄组[10-20])到 13.40 岁(年龄组[90-100])。视觉评估揭示了导致预测误差的因素,包括修复体、牙齿缺失和骨吸收。DentAge 代表了牙科领域中自动年龄预测的重大进展。该模型在不同年龄组和牙齿状况下的稳健表现突显了其在实际场景中的潜在应用价值。我们的模型将向公众开放,以进行进一步的调整和验证,确保 DentAge 在实际场景中的有效性和可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验