Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, South Korea.
Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea.
Int J Legal Med. 2024 Jul;138(4):1741-1757. doi: 10.1007/s00414-024-03204-4. Epub 2024 Mar 12.
Sex and chronological age estimation are crucial in forensic investigations and research on individual identification. Although manual methods for sex and age estimation have been proposed, these processes are labor-intensive, time-consuming, and error-prone. The purpose of this study was to estimate sex and chronological age from panoramic radiographs automatically and robustly using a multi-task deep learning network (ForensicNet). ForensicNet consists of a backbone and both sex and age attention branches to learn anatomical context features of sex and chronological age from panoramic radiographs and enables the multi-task estimation of sex and chronological age in an end-to-end manner. To mitigate bias in the data distribution, our dataset was built using 13,200 images with 100 images for each sex and age range of 15-80 years. The ForensicNet with EfficientNet-B3 exhibited superior estimation performance with mean absolute errors of 2.93 ± 2.61 years and a coefficient of determination of 0.957 for chronological age, and achieved accuracy, specificity, and sensitivity values of 0.992, 0.993, and 0.990, respectively, for sex prediction. The network demonstrated that the proposed sex and age attention branches with a convolutional block attention module significantly improved the estimation performance for both sex and chronological age from panoramic radiographs of elderly patients. Consequently, we expect that ForensicNet will contribute to the automatic and accurate estimation of both sex and chronological age from panoramic radiographs.
性别和年龄推断在法医学调查和个体识别研究中至关重要。尽管已经提出了用于性别和年龄推断的手动方法,但这些过程既费时又费力,容易出错。本研究的目的是使用多任务深度学习网络(ForensicNet)自动且稳健地从全景片中推断性别和年龄。ForensicNet 由骨干网络和性别与年龄注意力分支组成,用于从全景片中学习性别和年龄的解剖上下文特征,并以端到端的方式实现性别和年龄的多任务估计。为了减轻数据分布中的偏差,我们的数据集使用了 13200 张图像构建,每张图像代表 15-80 岁的每个性别和年龄范围的 100 张图像。使用 EfficientNet-B3 的 ForensicNet 表现出优异的估计性能,对于年龄推断,平均绝对误差为 2.93±2.61 岁,决定系数为 0.957;对于性别预测,准确率、特异性和灵敏度分别为 0.992、0.993 和 0.990。该网络表明,所提出的具有卷积块注意力模块的性别和年龄注意力分支显著提高了对老年患者全景片的性别和年龄推断性能。因此,我们期望 ForensicNet 将有助于从全景片中自动且准确地推断性别和年龄。