Suppr超能文献

基于机器学习算法鉴定新型 M2 巨噬细胞相关分子 ATP6V1E1 及其在肝细胞癌中的生物学作用。

Identification of novel M2 macrophage-related molecule ATP6V1E1 and its biological role in hepatocellular carcinoma based on machine learning algorithms.

机构信息

School of Basic Medical, Anhui Medical College, Hefei, Anhui, China.

出版信息

J Cell Mol Med. 2024 Sep;28(18):e70072. doi: 10.1111/jcmm.70072.

Abstract

Hepatocellular carcinoma (HCC) remains the most prevalent form of primary liver cancer, characterized by late detection and suboptimal response to current therapies. The tumour microenvironment, especially the role of M2 macrophages, is pivotal in the progression and prognosis of HCC. We applied the machine learning algorithm-CIBERSORT, to quantify cellular compositions within the HCC TME, focusing on M2 macrophages. Gene expression profiles were analysed to identify key molecules, with ATP6V1E1 as a primary focus. We employed Gene Set Enrichment Analysis (GSEA) and Kaplan-Meier survival analysis to investigate the molecular pathways and prognostic significance of ATP6V1E1. A prognostic model was developed using multivariate Cox regression analysis based on ATP6V1E1-related molecules, and functional impacts were assessed through cell proliferation assays. M2 macrophages were the dominant cell type in the HCC TME, significantly correlating with adverse survival outcomes. ATP6V1E1 was robustly associated with advanced disease stages and poor prognostic features such as vascular invasion and elevated alpha-fetoprotein levels. GSEA linked high ATP6V1E1 expression to critical oncogenic pathways, including immunosuppression and angiogenesis, and reduced activity in metabolic processes like bile acid and fatty acid metabolism. The prognostic model stratified HCC patients into distinct risk categories, showing high predictive accuracy (1-year AUC = 0.775, 3-year AUC = 0.709 and 5-year AUC = 0.791). In vitro assays demonstrated that ATP6V1E1 knockdown markedly inhibited the proliferation of HCC cells. The study underscores the significance of M2 macrophages and ATP6V1E1 in HCC, highlighting their potential as therapeutic and prognostic targets.

摘要

肝细胞癌 (HCC) 仍然是最常见的原发性肝癌形式,其特点是晚期发现和对当前治疗的反应不佳。肿瘤微环境,特别是 M2 巨噬细胞的作用,在 HCC 的进展和预后中起着关键作用。我们应用机器学习算法-CIBERSORT,对 HCC TME 中的细胞组成进行定量分析,重点关注 M2 巨噬细胞。分析基因表达谱以确定关键分子,其中 ATP6V1E1 是主要关注点。我们采用基因集富集分析(GSEA)和 Kaplan-Meier 生存分析来研究 ATP6V1E1 的分子途径和预后意义。我们基于与 ATP6V1E1 相关的分子,使用多变量 Cox 回归分析开发了一个预后模型,并通过细胞增殖测定评估了功能影响。M2 巨噬细胞是 HCC TME 中的主要细胞类型,与不良生存结果显著相关。ATP6V1E1 与晚期疾病阶段和不良预后特征(如血管侵犯和 AFP 水平升高)密切相关。GSEA 将高 ATP6V1E1 表达与关键致癌途径相关联,包括免疫抑制和血管生成,并降低了胆汁酸和脂肪酸代谢等代谢过程的活性。该预后模型将 HCC 患者分为不同的风险类别,具有较高的预测准确性(1 年 AUC=0.775、3 年 AUC=0.709 和 5 年 AUC=0.791)。体外实验表明,ATP6V1E1 敲低显著抑制了 HCC 细胞的增殖。该研究强调了 M2 巨噬细胞和 ATP6V1E1 在 HCC 中的重要性,突出了它们作为治疗和预后靶点的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验