Chen Leheng, Zhang Chuang, Zhao Jin
School of Mathematical Sciences, <a href="https://ror.org/02v51f717">Peking University</a>, Beijing 100871, China.
Department of Physics, <a href="https://ror.org/0576gt767">Hangzhou Dianzi University</a>, Hangzhou 310018, China.
Phys Rev E. 2024 Aug;110(2-2):025303. doi: 10.1103/PhysRevE.110.025303.
Many macroscopic non-Fourier heat conduction models have been developed in the past decades based on Chapman-Enskog, Hermite, or other small perturbation expansion methods. These macroscopic models have achieved great success in capturing non-Fourier thermal behaviors in solid materials, but most of them are limited by small Knudsen numbers and incapable of capturing highly nonequilibrium or ballistic thermal transport. In this paper, we provide a different strategy for constructing macroscopic non-Fourier heat conduction modeling, that is, using data-driven deep-learning methods combined with nonequilibrium thermodynamics instead of small perturbation expansion. We present the mechanism-data fusion method, an approach that seamlessly integrates the rigorous framework of conservation-dissipation formalism (CDF) with the flexibility of machine learning to model non-Fourier heat conduction. Leveraging the conservation-dissipation principle with dual-dissipative variables, we derive an interpretable series of partial differential equations, fine tuned through a training strategy informed by data from the phonon Boltzmann transport equation. Moreover, we also present the inner-step operation to narrow the gap from the discrete form to the continuous system. Through numerical tests, our model demonstrates excellent predictive capabilities across various heat conduction regimes, including diffusive, hydrodynamic, and ballistic regimes, and displays its robustness and precision even with discontinuous initial conditions.
在过去几十年中,基于查普曼-恩斯科格、埃尔米特或其他小扰动展开方法,已经开发了许多宏观非傅里叶热传导模型。这些宏观模型在捕捉固体材料中的非傅里叶热行为方面取得了巨大成功,但其中大多数受到小克努森数的限制,无法捕捉高度非平衡或弹道热输运。在本文中,我们提供了一种构建宏观非傅里叶热传导模型的不同策略,即使用数据驱动的深度学习方法结合非平衡热力学,而不是小扰动展开。我们提出了机制-数据融合方法,一种将守恒-耗散形式(CDF)的严格框架与机器学习的灵活性无缝集成以对非傅里叶热传导进行建模的方法。利用具有双耗散变量的守恒-耗散原理,我们推导出一系列可解释的偏微分方程,并通过基于声子玻尔兹曼输运方程数据的训练策略进行微调。此外,我们还提出了内步运算,以缩小从离散形式到连续系统的差距。通过数值测试,我们的模型在包括扩散、流体动力学和弹道区域在内的各种热传导区域都展示了出色的预测能力,并且即使在初始条件不连续的情况下也显示出其稳健性和精度。