Peng Liangrong, Hong Liu
College of Mathematics and Data Science, Minjiang University, Fuzhou 350108, China.
School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China.
Entropy (Basel). 2021 Oct 31;23(11):1447. doi: 10.3390/e23111447.
The main purpose of this review is to summarize the recent advances of the Conservation-Dissipation Formalism (CDF), a new way for constructing both thermodynamically compatible and mathematically stable and well-posed models for irreversible processes. The contents include but are not restricted to the CDF's physical motivations, mathematical foundations, formulations of several classical models in mathematical physics from master equations and Fokker-Planck equations to Boltzmann equations and quasi-linear Maxwell equations, as well as novel applications in the fields of non-Fourier heat conduction, non-Newtonian viscoelastic fluids, wave propagation/transportation in geophysics and neural science, soft matter physics, etc. Connections with other popular theories in the field of non-equilibrium thermodynamics are examined too.
本综述的主要目的是总结守恒 - 耗散形式理论(CDF)的最新进展,这是一种为不可逆过程构建热力学相容且数学上稳定且适定模型的新方法。内容包括但不限于CDF的物理动机、数学基础、从主方程、福克 - 普朗克方程到玻尔兹曼方程和准线性麦克斯韦方程等数学物理中几个经典模型的公式化,以及在非傅里叶热传导、非牛顿粘弹性流体、地球物理学和神经科学中的波传播/传输、软物质物理等领域的新应用。还研究了与非平衡热力学领域其他流行理论的联系。