Shapoval Olga, Zoni Edoardo, Lehe Remi, Thévenet Maxence, Vay Jean-Luc
<a href="https://ror.org/02jbv0t02">Lawrence Berkeley National Laboratory</a>, Berkeley, California 94720, USA.
<a href="https://ror.org/01js2sh04">Deutsches Elektronen-Synchrotron DESY</a>, Notkestrasse 85, 22607 Hamburg, Germany.
Phys Rev E. 2024 Aug;110(2-2):025206. doi: 10.1103/PhysRevE.110.025206.
This paper introduces a formulation of the particle-in-cell (PIC) method for the modeling of relativistic plasmas, that leverages the ability of the pseudospectral analytical time-domain solver (PSATD) to handle arbitrary time dependencies of the charge and current densities during one PIC cycle (applied to second-order polynomial dependencies here). The formulation is applied to a modified set of Maxwell's equations that was proposed earlier in the context of divergence cleaning, and to recently proposed extensions of the PSATD-PIC algorithm. Detailed analysis and testings revealed that, under some condition, the formulation can expand the range of numerical parameters under which PIC simulations are stable and accurate when modeling relativistic plasmas such as, e.g., plasma-based particle accelerators.
本文介绍了一种用于相对论等离子体建模的粒子模拟(PIC)方法的公式,该方法利用伪谱时域求解器(PSATD)在一个PIC周期内处理电荷和电流密度的任意时间依赖性的能力(此处应用于二阶多项式依赖性)。该公式应用于先前在散度清理背景下提出的一组修改后的麦克斯韦方程组,以及PSATD-PIC算法最近提出的扩展。详细的分析和测试表明,在某些条件下,该公式可以扩大数值参数的范围,在对诸如基于等离子体的粒子加速器等相对论等离子体进行建模时,PIC模拟在该范围内是稳定且准确的。