Suppr超能文献

NMR-Onion——一种基于透明多模型的一维核磁共振反褶积算法。

NMR-Onion - a transparent multi-model based 1D NMR deconvolution algorithm.

作者信息

Brinks Sørensen Mathies, Riis Andersen Michael, Siewertsen Mette-Maya, Bro Rasmus, Strube Mikael Lenz, Gotfredsen Charlotte Held

机构信息

Department of Chemistry, Technical University of Denmark, Kgs Lyngby, DK-2800, Denmark.

Department of Applied Mathematics and Computer Science, Kgs Lyngby, DK-2800, Denmark.

出版信息

Heliyon. 2024 Aug 30;10(17):e36998. doi: 10.1016/j.heliyon.2024.e36998. eCollection 2024 Sep 15.

Abstract

We introduce NMR-Onion, an open-source, computationally efficient algorithm based on Python and PyTorch, designed to facilitate the automatic deconvolution of 1D NMR spectra. NMR-Onion features two innovative time-domain models capable of handling asymmetric non-Lorentzian line shapes. Its core components for resolution-enhanced peak detection and digital filtering of user-specified key regions ensure precise peak prediction and efficient computation. The NMR-Onion framework includes three built-in statistical models, with automatic selection via the BIC criterion. Additionally, NMR-Onion assesses the repeatability of results by evaluating post-modeling uncertainty. Using the NMR-Onion algorithm helps to minimize excessive peak detection.

摘要

我们介绍了NMR-Onion,这是一种基于Python和PyTorch的开源且计算高效的算法,旨在促进一维核磁共振(NMR)谱的自动去卷积。NMR-Onion具有两个创新的时域模型,能够处理不对称的非洛伦兹线形。其用于分辨率增强的峰检测和用户指定关键区域数字滤波的核心组件确保了精确的峰预测和高效的计算。NMR-Onion框架包括三个内置统计模型,并通过贝叶斯信息准则(BIC)进行自动选择。此外,NMR-Onion通过评估建模后的不确定性来评估结果的可重复性。使用NMR-Onion算法有助于将过多的峰检测降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a9/11407975/09815474889e/gr005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验