Suppr超能文献

疫情时钟:一个有助于理解致病性疾病爆发并推动应对未来相关关注疫情的灵敏平台。

Epi-Clock: A sensitive platform to help understand pathogenic disease outbreaks and facilitate the response to future outbreaks of concern.

作者信息

Ji Cong, Shao Junbin Jack

机构信息

Liferiver Science and Technology Institute, Shanghai ZJ Bio-Tech Co., Ltd., Shanghai, China.

出版信息

Heliyon. 2024 Aug 29;10(17):e36162. doi: 10.1016/j.heliyon.2024.e36162. eCollection 2024 Sep 15.

Abstract

To predict potential epidemic outbreaks, we tested our strategy, Epi-Clock, which applies the novel ZHU algorithm to different SARS-CoV-2 datasets before outbreaks to search for significant mutational accumulation patterns correlated with outbreak events. Surprisingly, some inter-species genetic distances in Coronaviridae may represent intermediate states of different species or subspecies in the evolutionary history of Coronaviridae. The insertions and deletions in whole-genome sequences between different hosts were separately associated with important roles in host transmission and shifts in Coronaviridae. Furthermore, we believe that non-nucleosomal DNA may play a dominant role in the divergence of different lineages of SARS-CoV-2 in different regions of the world owing to the lack of nucleosome protection. We suggest that strong selective variation among different lineages of SARS-CoV-2 is required to produce strong codon usage bias, which appears in B.1.640.2 and B.1.617.2 (Delta). Notably, we found that an increasing number of other types of substitutions, such as those resulting from the hitchhiking effect, accumulated, especially in the pre-breakout phase, although some of the previous substitutions were replaced by other dominant genotypes. From most validations, we could accurately predict the potential pre-phase of outbreaks with a median interval of 5 days.

摘要

为了预测潜在的疫情爆发,我们测试了我们的策略Epi-Clock,该策略将新颖的朱算法应用于疫情爆发前的不同SARS-CoV-2数据集,以寻找与爆发事件相关的显著突变积累模式。令人惊讶的是,冠状病毒科中的一些种间遗传距离可能代表了冠状病毒科进化史上不同物种或亚种的中间状态。不同宿主之间全基因组序列中的插入和缺失分别与冠状病毒科在宿主传播和转移中起重要作用有关。此外,我们认为,由于缺乏核小体保护,非核小体DNA可能在世界不同地区的SARS-CoV-2不同谱系的分化中起主导作用。我们认为,SARS-CoV-2不同谱系之间需要有强烈的选择性变异才能产生强烈的密码子使用偏好,这在B.1.640.2和B.1.617.2(德尔塔)中出现。值得注意的是,我们发现,越来越多的其他类型的替换,如由搭便车效应导致的替换,不断积累,尤其是在疫情爆发前阶段,尽管之前的一些替换被其他优势基因型所取代。从大多数验证结果来看,我们能够准确预测疫情爆发的潜在前期阶段,中位数间隔为5天。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14db/11408147/b811d453c9a9/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验