Wang Zheng, Gao Zhiwei, Yu Yong, Li Huirong, Luo Wei, Ji Zhongqiang, Ding Haitao
Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China.
Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China.
Front Microbiol. 2024 Sep 4;15:1463144. doi: 10.3389/fmicb.2024.1463144. eCollection 2024.
The microbial communities inhabiting polar ecosystems, particularly in Maxwell Bay, Antarctica, play a pivotal role in nutrient cycling and ecosystem dynamics. However, the diversity of these microbial communities remains underexplored. In this study, we aim to address this gap by investigating the distribution, environmental drivers, and metabolic potential of microorganisms in Maxwell Bay. We analyzed the prokaryotic and eukaryotic microbiota at 11 stations, revealing distinctive community structures and diverse phylum dominance by using high-throughput sequencing. Spatial analysis revealed a significant impact of longitude on microbial communities, with microeukaryotes exhibiting greater sensitivity to spatial factors than microprokaryotes. We constructed co-occurrence networks to explore the stability of microbial communities, indicating the complexity and stability of microprokaryotic communities compared with those of microeukaryotes. Our findings suggest that the microeukaryotic communities in Maxwell Bay are more susceptible to disturbances. Additionally, this study revealed the spatial correlations between microbial communities, diversity, and environmental variables. Redundancy analysis highlighted the significance of pH and dissolved oxygen in shaping microprokaryotic and microeukaryotic communities, indicating the anthropogenic influence near the scientific research stations. Functional predictions using Tax4Fun2 and FUNGuild revealed the metabolic potential and trophic modes of the microprokaryotic and microeukaryotic communities, respectively. Finally, this study provides novel insights into the microbial ecology of Maxwell Bay, expanding the understanding of polar microbiomes and their responses to environmental factors.
栖息在极地生态系统,特别是南极洲马克斯韦尔湾的微生物群落,在养分循环和生态系统动态中起着关键作用。然而,这些微生物群落的多样性仍未得到充分探索。在本研究中,我们旨在通过调查马克斯韦尔湾微生物的分布、环境驱动因素和代谢潜力来填补这一空白。我们分析了11个站点的原核生物和真核生物微生物群,通过高通量测序揭示了独特的群落结构和不同的门优势。空间分析表明经度对微生物群落有显著影响,微型真核生物比微型原核生物对空间因素表现出更高的敏感性。我们构建了共现网络来探索微生物群落的稳定性,表明与微型真核生物群落相比,微型原核生物群落的复杂性和稳定性更高。我们的研究结果表明,马克斯韦尔湾的微型真核生物群落更容易受到干扰。此外,本研究揭示了微生物群落、多样性和环境变量之间的空间相关性。冗余分析突出了pH值和溶解氧在塑造微型原核生物和微型真核生物群落中的重要性,表明了科研站附近的人为影响。使用Tax4Fun2和FUNGuild进行的功能预测分别揭示了微型原核生物和微型真核生物群落的代谢潜力和营养模式。最后,本研究为马克斯韦尔湾的微生物生态学提供了新的见解,扩展了对极地微生物群落及其对环境因素响应的理解。