Suppr超能文献

通过生成对抗网络加速乳腺组织全样本偏振分辨二次谐波生成成像

Accelerating whole-sample polarization-resolved second harmonic generation imaging in mammary gland tissue via generative adversarial networks.

作者信息

Aghigh Arash, Cardot Jysiane, Mohammadi Melika Saadat, Jargot Gaëtan, Ibrahim Heide, Plante Isabelle, Légaré François

机构信息

Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, Canada.

Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada.

出版信息

Biomed Opt Express. 2024 Aug 15;15(9):5251-5271. doi: 10.1364/BOE.529779. eCollection 2024 Sep 1.

Abstract

Polarization second harmonic generation (P-SHG) imaging is a powerful technique for studying the structure and properties of biological and material samples. However, conventional whole-sample P-SHG imaging is time consuming and requires expensive equipment. This paper introduces a novel approach that significantly improves imaging resolution under conditions of reduced imaging time and resolution, utilizing enhanced super-resolution generative adversarial networks (ESRGAN) to upscale low-resolution images. We demonstrate that this innovative approach maintains high image quality and analytical accuracy, while reducing the imaging time by more than 95%. We also discuss the benefits of the proposed method for reducing laser-induced photodamage, lowering the cost of optical components, and increasing the accessibility and applicability of P-SHG imaging in various fields. Our work significantly advances whole-sample mammary gland P-SHG imaging and opens new possibilities for scientific discovery and innovation.

摘要

偏振二次谐波产生(P-SHG)成像是研究生物和材料样品结构与特性的强大技术。然而,传统的全样本P-SHG成像耗时且需要昂贵的设备。本文介绍了一种新颖的方法,该方法在减少成像时间和分辨率的条件下显著提高成像分辨率,利用增强型超分辨率生成对抗网络(ESRGAN)对低分辨率图像进行超分辨率处理。我们证明,这种创新方法在保持高图像质量和分析准确性的同时,将成像时间减少了95%以上。我们还讨论了该方法在减少激光诱导的光损伤、降低光学元件成本以及提高P-SHG成像在各个领域的可及性和适用性方面的益处。我们的工作显著推进了全样本乳腺P-SHG成像,并为科学发现和创新开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d413/11407270/d450084171fb/boe-15-9-5251-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验