Yasuhiko Osamu, Takeuchi Kozo
Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamana-ku, Hamamatsu, Shizuoka 434-8601, Japan.
Biomed Opt Express. 2024 Aug 19;15(9):5296-5313. doi: 10.1364/BOE.524859. eCollection 2024 Sep 1.
Optical diffraction tomography (ODT) enables the label-free volumetric imaging of biological specimens by mapping their three-dimensional refractive index (RI) distribution. However, the depth of imaging achievable is restricted due to spatially inhomogeneous RI distributions that induce multiple scattering. In this study, we introduce a novel ODT technique named bidirectional in-silico clearing RI tomography. This method incorporates both forward and reversed in-silico clearing. For the reversed in-silico clearing, we have integrated an ODT reconstruction framework with a transmission matrix approach, which enables RI reconstruction and wave backpropagation from the illumination side without necessitating modifications to the conventional ODT setup. Furthermore, the framework employs a sparsely sampled transmission matrix, significantly reducing the requisite number of measurements and computational expenses. Employing this proposed technique, we successfully imaged a spheroid with a thickness of 263 µm, corresponding to 11.4 scattering mean free paths. This method was successfully applied to various biological specimens, including liver and colon spheroids, demonstrating consistent imaging performance across samples with varied morphologies.
光学衍射层析成像(ODT)通过绘制生物样本的三维折射率(RI)分布,实现对其进行无标记的体积成像。然而,由于空间上不均匀的RI分布会引起多重散射,可实现的成像深度受到限制。在本研究中,我们引入了一种名为双向虚拟清除RI层析成像的新型ODT技术。该方法结合了正向和反向虚拟清除。对于反向虚拟清除,我们将一个ODT重建框架与传输矩阵方法相结合,这使得能够从照明侧进行RI重建和波的反向传播,而无需对传统ODT设置进行修改。此外,该框架采用稀疏采样的传输矩阵,显著减少了所需的测量次数和计算成本。采用这种提出的技术,我们成功地对一个厚度为263 µm的球体进行了成像,相当于11.4个散射平均自由程。该方法已成功应用于各种生物样本,包括肝脏和结肠球体,证明了在具有不同形态的样本中成像性能的一致性。