Wu Jingyi, Satish Gopika, Ruesch Alexander, Jayet Baptiste, Komolibus Katarzyna, Andersson-Engels Stefan, Debreczeny Martin P, Kainerstorfer Jana M
Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
Neurolscience Institute, Carnegie Mellon University , 4400 Forbes Avenue, Pittsburgh, PA 15213, USA.
Biomed Opt Express. 2024 Aug 19;15(9):5280-5295. doi: 10.1364/BOE.531149. eCollection 2024 Sep 1.
Transabdominal fetal pulse oximetry offers a promising approach to improve fetal monitoring and reduce unnecessary interventions. Utilizing realistic 3D geometries derived from MRI scans of pregnant women, we conducted photon simulations to determine optimal source-detector configurations for detecting fetal heart rate and oxygenation. Our findings demonstrate the theoretical feasibility of measuring fetal signals at depths up to 30 mm using source-detector (SD) distances greater than 100 mm and wavelengths between 730 and 850 nm. Furthermore, we highlight the importance of customizing SD configurations based on fetal position and maternal anatomy. These insights pave the way for enhanced non-invasive fetal monitoring in clinical application.
经腹胎儿脉搏血氧饱和度测定为改善胎儿监测和减少不必要的干预措施提供了一种很有前景的方法。利用从孕妇磁共振成像(MRI)扫描获得的逼真三维几何结构,我们进行了光子模拟,以确定用于检测胎儿心率和氧合的最佳源-探测器配置。我们的研究结果表明,使用大于100毫米的源-探测器(SD)距离和730至850纳米之间的波长,在深度达30毫米处测量胎儿信号在理论上是可行的。此外,我们强调了根据胎儿位置和母体解剖结构定制SD配置的重要性。这些见解为临床应用中增强无创胎儿监测铺平了道路。