Iskhakova Kamila, Cwieka Hanna, Meers Svenja, Helmholz Heike, Davydok Anton, Storm Malte, Baltruschat Ivo Matteo, Galli Silvia, Pröfrock Daniel, Will Olga, Gerle Mirko, Damm Timo, Sefa Sandra, He Weilue, MacRenaris Keith, Soujon Malte, Beckmann Felix, Moosmann Julian, O'Hallaran Thomas, Guillory Roger J, Wieland D C Florian, Zeller-Plumhoff Berit, Willumeit-Römer Regine
Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany.
Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany.
Bioact Mater. 2024 Sep 3;41:657-671. doi: 10.1016/j.bioactmat.2024.07.019. eCollection 2024 Nov.
Magnesium (Mg) - based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing, e.g. as a suture anchor. Due to their mechanical properties and biocompatibility, they may replace titanium or stainless-steel implants, commonly used in orthopedic field. Nevertheless, patient safety has to be assured by finding a long-term balance between metal degradation, osseointegration, bone ultrastructure adaptation and element distribution in organs. In order to determine the implant behavior and its influence on bone and tissues, we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone. The implants were present in rat tibia for 10, 20 and 32 weeks before sacrifice of the animal. Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal, degradation layer and bone structure. Additionally, X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface. Finally, with element specific mass spectrometry, the elements and their accumulation in the main organs and tissues are traced. The results show that Mg-xGd implants degrade under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks. No accumulation of Mg and Gd was observed in selected organs, except for the interfacial bone after 8 months of healing. Thus, we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants.
镁(Mg)基合金正成为医学应用中颇具吸引力的材料,可用作支持骨折愈合的临时骨植入物,例如作为缝合锚钉。由于其机械性能和生物相容性,它们可能会取代骨科领域常用的钛或不锈钢植入物。然而,必须通过在金属降解、骨整合、骨超微结构适应和器官中元素分布之间找到长期平衡来确保患者安全。为了确定植入物的行为及其对骨骼和组织的影响,我们研究了钆含量分别为5重量百分比和10重量百分比的两种镁合金,并与永久性材料钛和聚醚醚酮进行了比较。在处死动物之前,将植入物植入大鼠胫骨中10周、20周和32周。基于同步辐射的微型计算机断层扫描能够区分残余金属、降解层和骨结构等特征。此外,X射线衍射和X射线荧光可提供有关描述骨超微结构和骨与植入物界面处元素组成的参数的信息。最后,通过元素特异性质谱法追踪元素及其在主要器官和组织中的积累情况。结果表明,Mg-xGd植入物在形成稳定的降解层的情况下会降解,10周后骨重塑情况与钛相似。除愈合8个月后的界面骨外,在选定器官中未观察到镁和钆的积累。因此,我们证实Mg-5Gd和Mg-10Gd是骨植入物的合适材料选择。