Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
Acta Biomater. 2020 Jan 1;101:637-645. doi: 10.1016/j.actbio.2019.11.030. Epub 2019 Nov 14.
Magnesium alloys are increasingly researched as temporary biodegradable metal implants in bone applications due to their mechanical properties which are more similar to bone than conventional implant metals and the fact that Magnesium occurs naturally within the body. However, the degradation processes in vivo and in particular the interaction of the bone with the degrading material need to be further investigated. In this study we are presenting the first quantitative comparison of the bone ultrastructure formed at the interface of biodegradable Mg-5Gd and Mg-10Gd implants and titanium and PEEK implants after 4, 8 and 12 weeks healing time using two-dimensional small angle X-ray scattering and X-ray diffraction. Differences in mineralization, orientation and thickness of the hydroxyapatite are assessed. We find statistically significant (p < 0.05) differences for the lattice spacing of the (310)-reflex of hydroxyapatite between titanium and Mg-xGd materials, as well as for the (310) crystal size between titanium and Mg-5Gd, indicating a possible deposition of Mg within the bone matrix. The (310) lattice spacing and crystallite size further differ significantly between implant degradation layer and surrounding bone (p < 0.001 for Mg-10Gd), suggesting apatite formation with significant amounts of Gd and Mg within the degradation layer. STATEMENT OF SIGNIFICANCE: Biodegradable Magnesium-based alloys are emerging as a viable alternative for temporary bone implant applications. However, in order to understand if the degradation of the implant material influences the bone ultrastructure, it is necessary to study the bone structure using high-resolution techniques. We have therefore employed 2D small angle X-ray scattering and X-ray diffraction to study the bone ultrastructure surrounding Magnesium-Gadolinium alloys as well as Titanium and PEEK alloys at three different healing times. This is the first time, that the bone ultrastructure around these materials is directly compared and that a statistical evaluation is performed. We found differences indicating a possible deposition of Mg within the bone matrix as well as a local deposition of Mg and/or Gd at the implant site. DATA AVAILABILITY STATEMENT: The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.
镁合金作为一种新型可生物降解的金属植入物,因其机械性能与传统植入金属相比更接近骨骼,且镁在体内天然存在,因此在骨应用中越来越受到研究关注。然而,体内的降解过程,特别是骨与降解材料的相互作用,需要进一步研究。在这项研究中,我们首次通过二维小角 X 射线散射和 X 射线衍射,对生物降解 Mg-5Gd 和 Mg-10Gd 植入物与钛和 PEEK 植入物在 4、8 和 12 周愈合时间后界面处形成的骨超微结构进行了定量比较。评估了羟基磷灰石的矿化、取向和厚度的差异。我们发现钛和 Mg-xGd 材料之间的羟基磷灰石(310)-反射的晶格间距以及钛和 Mg-5Gd 之间的(310)晶体尺寸存在统计学上显著差异(p<0.05),表明可能有 Mg 沉积在骨基质中。植入物降解层与周围骨之间的(310)晶格间距和晶粒尺寸进一步存在显著差异(p<0.001 对于 Mg-10Gd),表明降解层内形成了含有大量 Gd 和 Mg 的磷灰石。意义声明:可生物降解的镁基合金作为一种有前途的临时骨植入物应用正在出现。然而,为了了解植入材料的降解是否会影响骨超微结构,有必要使用高分辨率技术研究骨结构。因此,我们使用二维小角 X 射线散射和 X 射线衍射研究了在三种不同愈合时间下,镁-钆合金以及钛和 PEEK 合金周围的骨超微结构。这是首次直接比较这些材料周围的骨超微结构,并进行了统计评估。我们发现了一些差异,这些差异表明 Mg 可能沉积在骨基质中,以及在植入物部位局部沉积 Mg 和/或 Gd。数据可用性声明:目前由于数据也是正在进行的研究的一部分,因此无法共享重现这些发现所需的原始/处理数据。